Enhanced HER-2 prediction in breast cancer through synergistic integration of deep learning, ultrasound radiomics, and clinical data.

Authors

Hu M,Zhang L,Wang X,Xiao X

Affiliations (2)

  • Department of Ultrasound, Affiliated Hospital, Jiujiang Medical College, Jiujiang, 332000, Jiangxi, China.
  • Department of Ultrasound, Affiliated Hospital, Jiujiang Medical College, Jiujiang, 332000, Jiangxi, China. [email protected].

Abstract

This study integrates ultrasound Radiomics with clinical data to enhance the diagnostic accuracy of HER-2 expression status in breast cancer, aiming to provide more reliable treatment strategies for this aggressive disease. We included ultrasound images and clinicopathologic data from 210 female breast cancer patients, employing a Generative Adversarial Network (GAN) to enhance image clarity and segment the region of interest (ROI) for Radiomics feature extraction. Features were optimized through Z-score normalization and various statistical methods. We constructed and compared multiple machine learning models, including Linear Regression, Random Forest, and XGBoost, with deep learning models such as CNNs (ResNet101, VGG19) and Transformer technology. The Grad-CAM technique was used to visualize the decision-making process of the deep learning models. The Deep Learning Radiomics (DLR) model integrated Radiomics features with deep learning features, and a combined model further integrated clinical features to predict HER-2 status. The LightGBM and ResNet101 models showed high performance, but the combined model achieved the highest AUC values in both training and testing, demonstrating the effectiveness of integrating diverse data sources. The study successfully demonstrates that the fusion of deep learning with Radiomics analysis significantly improves the prediction accuracy of HER-2 status, offering a new strategy for personalized breast cancer treatment and prognostic assessments.

Topics

Breast NeoplasmsDeep LearningReceptor, ErbB-2Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.