Sort by:
Page 10 of 19190 results

Ultrasound-based radiomics and machine learning for enhanced diagnosis of knee osteoarthritis: Evaluation of diagnostic accuracy, sensitivity, specificity, and predictive value.

Kiso T, Okada Y, Kawata S, Shichiji K, Okumura E, Hatsumi N, Matsuura R, Kaminaga M, Kuwano H, Okumura E

pubmed logopapersJun 1 2025
To evaluate the usefulness of radiomics features extracted from ultrasonographic images in diagnosing and predicting the severity of knee osteoarthritis (OA). In this single-center, prospective, observational study, radiomics features were extracted from standing radiographs and ultrasonographic images of knees of patients aged 40-85 years with primary medial OA and without OA. Analysis was conducted using LIFEx software (version 7.2.n), ANOVA, and LASSO regression. The diagnostic accuracy of three different models, including a statistical model incorporating background factors and machine learning models, was evaluated. Among 491 limbs analyzed, 318 were OA and 173 were non-OA cases. The mean age was 72.7 (±8.7) and 62.6 (±11.3) years in the OA and non-OA groups, respectively. The OA group included 81 (25.5 %) men and 237 (74.5 %) women, whereas the non-OA group included 73 men (42.2 %) and 100 (57.8 %) women. A statistical model using the cutoff value of MORPHOLOGICAL_SurfaceToVolumeRatio (IBSI:2PR5) achieved a specificity of 0.98 and sensitivity of 0.47. Machine learning diagnostic models (Model 2) demonstrated areas under the curve (AUCs) of 0.88 (discriminant analysis) and 0.87 (logistic regression), with sensitivities of 0.80 and 0.81 and specificities of 0.82 and 0.80, respectively. For severity prediction, the statistical model using MORPHOLOGICAL_SurfaceToVolumeRatio (IBSI:2PR5) showed sensitivity and specificity values of 0.78 and 0.86, respectively, whereas machine learning models achieved an AUC of 0.92, sensitivity of 0.81, and specificity of 0.85 for severity prediction. The use of radiomics features in diagnosing knee OA shows potential as a supportive tool for enhancing clinicians' decision-making.

Predicting strength of femora with metastatic lesions from single 2D radiographic projections using convolutional neural networks.

Synek A, Benca E, Licandro R, Hirtler L, Pahr DH

pubmed logopapersJun 1 2025
Patients with metastatic bone disease are at risk of pathological femoral fractures and may require prophylactic surgical fixation. Current clinical decision support tools often overestimate fracture risk, leading to overtreatment. While novel scores integrating femoral strength assessment via finite element (FE) models show promise, they require 3D imaging, extensive computation, and are difficult to automate. Predicting femoral strength directly from single 2D radiographic projections using convolutional neural networks (CNNs) could address these limitations, but this approach has not yet been explored for femora with metastatic lesions. This study aimed to test whether CNNs can accurately predict strength of femora with metastatic lesions from single 2D radiographic projections. CNNs with various architectures were developed and trained using an FE model generated training dataset. This training dataset was based on 36,000 modified computed tomography (CT) scans, created by randomly inserting artificial lytic lesions into the CT scans of 36 intact anatomical femoral specimens. From each modified CT scan, an anterior-posterior 2D projection was generated and femoral strength in one-legged stance was determined using nonlinear FE models. Following training, the CNN performance was evaluated on an independent experimental test dataset consisting of 31 anatomical femoral specimens (16 intact, 15 with artificial lytic lesions). 2D projections of each specimen were created from corresponding CT scans and femoral strength was assessed in mechanical tests. The CNNs' performance was evaluated using linear regression analysis and compared to 2D densitometric predictors (bone mineral density and content) and CT-based 3D FE models. All CNNs accurately predicted the experimentally measured strength in femora with and without metastatic lesions of the test dataset (R²≥0.80, CCC≥0.81). In femora with metastatic lesions, the performance of the CNNs (best: R²=0.84, CCC=0.86) was considerably superior to 2D densitometric predictors (R²≤0.07) and slightly inferior to 3D FE models (R²=0.90, CCC=0.94). CNNs, trained on a large dataset generated via FE models, predicted experimentally measured strength of femora with artificial metastatic lesions with accuracy comparable to 3D FE models. By eliminating the need for 3D imaging and reducing computational demands, this novel approach demonstrates potential for application in a clinical setting.

Integrating finite element analysis and physics-informed neural networks for biomechanical modeling of the human lumbar spine.

Ahmadi M, Biswas D, Paul R, Lin M, Tang Y, Cheema TS, Engeberg ED, Hashemi J, Vrionis FD

pubmed logopapersJun 1 2025
Comprehending the biomechanical characteristics of the human lumbar spine is crucial for managing and preventing spinal disorders. Precise material properties derived from patient-specific CT scans are essential for simulations to accurately mimic real-life scenarios, which is invaluable in creating effective surgical plans. The integration of Finite Element Analysis (FEA) with Physics-Informed Neural Networks (PINNs) offers significant clinical benefits by automating lumbar spine segmentation and meshing. We developed a FEA model of the lumbar spine incorporating detailed anatomical and material properties derived from high-quality CT and MRI scans. The model includes vertebrae and intervertebral discs, segmented and meshed using advanced imaging and computational techniques. PINNs were implemented to integrate physical laws directly into the neural network training process, ensuring that the predictions of material properties adhered to the governing equations of mechanics. The model achieved an accuracy of 94.30% in predicting material properties such as Young's modulus (14.88 GPa for cortical bone and 1.23 MPa for intervertebral discs), Poisson's ratio (0.25 and 0.47, respectively), bulk modulus (9.87 GPa and 6.56 MPa, respectively), and shear modulus (5.96 GPa and 0.42 MPa, respectively). We developed a lumbar spine FEA model using anatomical and material properties from CT and MRI scans. Vertebrae and discs were segmented and meshed with advanced imaging techniques, while PINNs ensured material predictions followed mechanical laws. The integration of FEA and PINNs allows for accurate, automated prediction of material properties and mechanical behaviors of the lumbar spine, significantly reducing manual input and enhancing reliability. This approach ensures dependable biomechanical simulations and supports the development of personalized treatment plans and surgical strategies, ultimately improving clinical outcomes for spinal disorders. This method improves surgical planning and outcomes, contributing to better patient care and recovery in spinal disorders.

Beyond traditional orthopaedic data analysis: AI, multimodal models and continuous monitoring.

Oettl FC, Zsidai B, Oeding JF, Hirschmann MT, Feldt R, Tischer T, Samuelsson K

pubmed logopapersJun 1 2025
Multimodal artificial intelligence (AI) has the potential to revolutionise healthcare by enabling the simultaneous processing and integration of various data types, including medical imaging, electronic health records, genomic information and real-time data. This review explores the current applications and future potential of multimodal AI across healthcare, with a particular focus on orthopaedic surgery. In presurgical planning, multimodal AI has demonstrated significant improvements in diagnostic accuracy and risk prediction, with studies reporting an Area under the receiving operator curve presenting good to excellent performance across various orthopaedic conditions. Intraoperative applications leverage advanced imaging and tracking technologies to enhance surgical precision, while postoperative care has been advanced through continuous patient monitoring and early detection of complications. Despite these advances, significant challenges remain in data integration, standardisation, and privacy protection. Technical solutions such as federated learning (allowing decentralisation of models) and edge computing (allowing data analysis to happen on site or closer to site instead of multipurpose datacenters) are being developed to address these concerns while maintaining compliance with regulatory frameworks. As this field continues to evolve, the integration of multimodal AI promises to advance personalised medicine, improve patient outcomes, and transform healthcare delivery through more comprehensive and nuanced analysis of patient data. Level of Evidence: Level V.

Semantic segmentation for individual thigh skeletal muscles of athletes on magnetic resonance images.

Kasahara J, Ozaki H, Matsubayashi T, Takahashi H, Nakayama R

pubmed logopapersJun 1 2025
The skeletal muscles that athletes should train vary depending on their discipline and position. Therefore, individual skeletal muscle cross-sectional area assessment is important in the development of training strategies. To measure the cross-sectional area of skeletal muscle, manual segmentation of each muscle is performed using magnetic resonance (MR) imaging. This task is time-consuming and requires significant effort. Additionally, interobserver variability can sometimes be problematic. The purpose of this study was to develop an automated computerized method for semantic segmentation of individual thigh skeletal muscles from MR images of athletes. Our database consisted of 697 images from the thighs of 697 elite athletes. The images were randomly divided into a training dataset (70%), a validation dataset (10%), and a test dataset (20%). A label image was generated for each image by manually annotating 15 object classes: 12 different skeletal muscles, fat, bones, and vessels and nerves. Using the validation dataset, DeepLab v3+ was chosen from three different semantic segmentation models as a base model for segmenting individual thigh skeletal muscles. The feature extractor in DeepLab v3+ was also optimized to ResNet50. The mean Jaccard index and Dice index for the proposed method were 0.853 and 0.916, respectively, which were significantly higher than those from conventional DeepLab v3+ (Jaccard index: 0.810, p < .001; Dice index: 0.887, p < .001). The proposed method achieved a mean area error for 15 objective classes of 3.12%, useful in the assessment of skeletal muscle cross-sectional area from MR images.

SSAT-Swin: Deep Learning-Based Spinal Ultrasound Feature Segmentation for Scoliosis Using Self-Supervised Swin Transformer.

Zhang C, Zheng Y, McAviney J, Ling SH

pubmed logopapersJun 1 2025
Scoliosis, a 3-D spinal deformity, requires early detection and intervention. Ultrasound curve angle (UCA) measurement using ultrasound images has emerged as a promising diagnostic tool. However, calculating the UCA directly from ultrasound images remains challenging due to low contrast, high noise, and irregular target shapes. Accurate segmentation results are therefore crucial to enhance image clarity and precision prior to UCA calculation. We propose the SSAT-Swin model, a transformer-based multi-class segmentation framework designed for ultrasound image analysis in scoliosis diagnosis. The model integrates a boundary-enhancement module in the decoder and a channel attention module in the skip connections. Additionally, self-supervised proxy tasks are used during pre-training on 1,170 images, followed by fine-tuning on 109 image-label pairs. The SSAT-Swin achieved Dice scores of 85.6% and Jaccard scores of 74.5%, with a 92.8% scoliosis bone feature detection rate, outperforming state-of-the-art models. Self-supervised learning enhances the model's ability to capture global context information, making it well-suited for addressing the unique challenges of ultrasound images, ultimately advancing scoliosis assessment through more accurate segmentation.

Patellar tilt calculation utilizing artificial intelligence on CT knee imaging.

Sieberer J, Rancu A, Park N, Desroches S, Manafzadeh AR, Tommasini S, Wiznia DH, Fulkerson J

pubmed logopapersJun 1 2025
In the diagnosis of patellar instability, three-dimensional (3D) imaging enables measurement of a wide range of metrics. However, measuring these metrics can be time-consuming and prone to error due to conducting 2D measurements on 3D objects. This study aims to measure patellar tilt in 3D and automate it by utilizing a commercial AI algorithm for landmark placement. CT-scans of 30 patients with at least two dislocation events and 30 controls without patellofemoral disease were acquired. Patellar tilt was measured using three different methods: the established method, and by calculating the angle between 3D-landmarks placed by either a human rater or an AI algorithm. Correlations between the three measurements were calculated using interclass correlation coefficients, and differences with a Kruskal-Wallis test. Significant differences of means between patients and controls were calculated using Mann-Whitney U tests. Significance was assumed at 0.05 adjusted with the Bonferroni method. No significant differences (overall: p = 0.10, patients: 0.51, controls: 0.79) between methods were found. Predicted ICC between the methods ranged from 0.86 to 0.90 with a 95% confidence interval of 0.77-0.94. Differences between patients and controls were significant (p < 0.001) for all three methods. The study offers an alternative 3D approach for calculating patellar tilt comparable to traditional, manual measurements. Furthermore, this analysis offers evidence that a commercially available software can identify the necessary anatomical landmarks for patellar tilt calculation, offering a potential pathway to increased automation of surgical decision-making metrics.

Side-to-side differences in hip bone mineral density in patients with unilateral hip osteoarthritis.

Uemura K, Kono S, Takashima K, Tamura K, Higuchi R, Mae H, Nakamura N, Otake Y, Sato Y, Sugano N, Okada S, Hamada H

pubmed logopapersJun 1 2025
Accurately evaluating bone mineral density (BMD) in patients with unilateral hip osteoarthritis (OA) is crucial for diagnosing osteoporosis and selecting implants for hip arthroplasty. Our goal was to measure the BMD differences between sides, examine contributing factors, and identify the optimal side for BMD assessment in these patients. We analyzed 108 women with unilateral hip OA. Bilateral hip BMD was assessed automatically through quantitative CT (QCT) utilizing a validated, deep-learning-based approach. We evaluated BMD variations between the OA and healthy hips across total, neck, and distal regions. To determine their contributions, we analyzed factors, including patient demographics, Crowe classification, Bombelli classification, knee OA status, hip functional score, and gluteal muscle volume and density. Furthermore, we examined how side-to-side BMD differences influenced osteoporosis diagnosis using T-scores based on QCT. The average BMD on the OA side was 6.9 % lower in the total region, 14.5 % higher in the neck region, and 9.4 % lower in the distal region than on the healthy side. Contributing factors to the reduced BMD in the OA hip included younger age, Bombelli classification (atrophic type), and significant gluteal muscle atrophy. Diagnoses from the OA side revealed lower sensitivity (61 %) than those from the healthy side (88 %). Analysis on one side alone yields a more precise osteoporosis diagnosis from the healthy side. Nonetheless, bilateral BMD assessment remains crucial, particularly in younger individuals and those with atrophic OA types. Although based on QCT, our findings support bilateral analysis by dual-energy X-ray absorptiometry for these patients.

Kellgren-Lawrence grading of knee osteoarthritis using deep learning: Diagnostic performance with external dataset and comparison with four readers.

Vaattovaara E, Panfilov E, Tiulpin A, Niinimäki T, Niinimäki J, Saarakkala S, Nevalainen MT

pubmed logopapersJun 1 2025
To evaluate the performance of a deep learning (DL) model in an external dataset to assess radiographic knee osteoarthritis using Kellgren-Lawrence (KL) grades against versatile human readers. Two-hundred-eight knee anteroposterior conventional radiographs (CRs) were included in this retrospective study. Four readers (three radiologists, one orthopedic surgeon) assessed the KL grades and consensus grade was derived as the mean of these. The DL model was trained using all the CRs from Multicenter Osteoarthritis Study (MOST) and validated on Osteoarthritis Initiative (OAI) dataset and then tested on our external dataset. To assess the agreement between the graders, Cohen's quadratic kappa (k) with 95 ​% confidence intervals were used. Diagnostic performance was measured using confusion matrices and receiver operating characteristic (ROC) analyses. The multiclass (KL grades from 0 to 4) diagnostic performance of the DL model was multifaceted: sensitivities were between 0.372 and 1.000, specificities 0.691-0.974, PPVs 0.227-0.879, NPVs 0.622-1.000, and AUCs 0.786-0.983. The overall balanced accuracy was 0.693, AUC 0.886, and kappa 0.820. If only dichotomous KL grading (i.e. KL0-1 vs. KL2-4) was utilized, superior metrics were seen with an overall balanced accuracy of 0.902 and AUC of 0.967. A substantial agreement between each reader and DL model was found: the inter-rater agreement was 0.737 [0.685-0.790] for the radiology resident, 0.761 [0.707-0.816] for the musculoskeletal radiology fellow, 0.802 [0.761-0.843] for the senior musculoskeletal radiologist, and 0.818 [0.775-0.860] for the orthopedic surgeon. In an external dataset, our DL model can grade knee osteoarthritis with diagnostic accuracy comparable to highly experienced human readers.

Predictive validity of consensus-based MRI definition of osteoarthritis plus radiographic osteoarthritis for the progression of knee osteoarthritis: A longitudinal cohort study.

Xing X, Wang Y, Zhu J, Shen Z, Cicuttini F, Jones G, Aitken D, Cai G

pubmed logopapersJun 1 2025
Our previous study showed that magnetic resonance imaging (MRI)-defined tibiofemoral osteoarthritis (MRI-OA), based on a Delphi approach, in combination with radiographic OA (ROA) had a strong predictive validity for the progression of knee OA. This study aimed to compare whether the combination using traditional prediction models was superior to the Light Gradient Boosting Machine (LightGBM) models. Data were from the Tasmanian Older Adult Cohort. A radiograph and 1.5T MRI of the right knee was performed. Tibial cartilage volume was measured at baseline, 2.6 and 10.7 years. Knee pain and function were assessed at baseline, 2.6, 5.1, and 10.7 years. Right-sided total knee replacement (TKR) were assessed over 13.5 years. The area under the curve (AUC) was applied to compare the predictive validity of logistic regression with the LightGBM algorithm. For significant imbalanced outcomes, the area under the precision-recall curve (AUC-PR) was used. 574 participants (mean 62 years, 49 ​% female) were included. Overall, the LightGBM showed a clinically acceptable predictive performance for all outcomes but TKR. For knee pain and function, LightGBM showed better predictive performance than logistic regression model (AUC: 0.731-0.912 vs 0.627-0.755). Similar results were found for tibial cartilage loss over 2.6 (AUC: 0.845 vs 0.701, p ​< ​0.001) and 10.7 years (AUC: 0.845 vs 0.753, p ​= ​0.016). For TKR, which exhibited significant class imbalance, both algorithms performed poorly (AUC-PR: 0.647 vs 0.610). Compared to logistic regression combining MRI-OA, ROA, and common covariates, LightGBM offers valuable insights that can inform early risk identification and targeted prevention strategies.
Page 10 of 19190 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.