Sort by:
Page 94 of 94933 results

Fully automated MRI-based analysis of the locus coeruleus in aging and Alzheimer's disease dementia using ELSI-Net.

Dünnwald M, Krohn F, Sciarra A, Sarkar M, Schneider A, Fliessbach K, Kimmich O, Jessen F, Rostamzadeh A, Glanz W, Incesoy EI, Teipel S, Kilimann I, Goerss D, Spottke A, Brustkern J, Heneka MT, Brosseron F, Lüsebrink F, Hämmerer D, Düzel E, Tönnies K, Oeltze-Jafra S, Betts MJ

pubmed logopapersJan 1 2025
The locus coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD). Magnetic resonance imaging-based LC features have shown potential to assess LC integrity in vivo. We present a deep learning-based LC segmentation and feature extraction method called Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) and apply it to healthy aging and AD dementia datasets. Agreement to expert raters and previously published LC atlases were assessed. We aimed to reproduce previously reported differences in LC integrity in aging and AD dementia and correlate extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology. ELSI-Net demonstrated high agreement to expert raters and published atlases. Previously reported group differences in LC integrity were detected and correlations to CSF biomarkers were found. Although we found excellent performance, further evaluations on more diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-Net's general applicability. We provide a thorough evaluation of a fully automatic locus coeruleus (LC) segmentation method termed Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) in aging and Alzheimer's disease (AD) dementia.ELSI-Net outperforms previous work and shows high agreement with manual ratings and previously published LC atlases.ELSI-Net replicates previously shown LC group differences in aging and AD.ELSI-Net's LC mask volume correlates with cerebrospinal fluid biomarkers of AD pathology.

Current Strategies to Reducing Interval Breast Cancers: A Systematic Review.

Goh RSJ, Chong B, Yeo S, Neo SY, Ng QX, Goh SSN

pubmed logopapersJan 1 2025
Interval breast cancers (IBCs) are detected between regular mammographic screenings after an initially negative result. Studies have shown that the prognosis of IBCs is similar to that of unscreened symptomatic cancers and is hence a surrogate used to assess the effectiveness of screening programs. This systematic review consolidates the current literature available on strategies to reduce the rates of IBC. Following PRISMA guidelines, three databases were searched from inception till October 29, 2023 to identify papers, which reported IBC rates. Key search terms included "interval breast cancer", "mammogram", "tomosynthesis" and "screening". A total of 32 articles were included. Fourteen studies discussed the use of digital breast tomosynthesis (DBT) as an alternative screening modality to mammograms. Six studies discussed the use of artificial intelligence (AI) on mammograms, five studies discussed the use of supplemental modalities including ultrasonography (US) in addition to mammograms, five studies discussed varying screening intervals and two studies discussed tamoxifen use. The trajectory of IBCs can be altered by early detection when they are more amenable to treatment, through advanced screening techniques, adjusting inter-screening intervals and modifiable risk factors. The goal is to create a screening protocol that is economically effective and accessible to various populations.

Radiomics and Deep Learning as Important Techniques of Artificial Intelligence - Diagnosing Perspectives in Cytokeratin 19 Positive Hepatocellular Carcinoma.

Wang F, Yan C, Huang X, He J, Yang M, Xian D

pubmed logopapersJan 1 2025
Currently, there are inconsistencies among different studies on preoperative prediction of Cytokeratin 19 (CK19) expression in HCC using traditional imaging, radiomics, and deep learning. We aimed to systematically analyze and compare the performance of non-invasive methods for predicting CK19-positive HCC, thereby providing insights for the stratified management of HCC patients. A comprehensive literature search was conducted in PubMed, EMBASE, Web of Science, and the Cochrane Library from inception to February 2025. Two investigators independently screened and extracted data based on inclusion and exclusion criteria. Eligible studies were included, and key findings were summarized in tables to provide a clear overview. Ultimately, 22 studies involving 3395 HCC patients were included. 72.7% (16/22) focused on traditional imaging, 36.4% (8/22) on radiomics, 9.1% (2/22) on deep learning, and 54.5% (12/22) on combined models. The magnetic resonance imaging was the most commonly used imaging modality (19/22), and over half of the studies (12/22) were published between 2022 and 2025. Moreover, 27.3% (6/22) were multicenter studies, 36.4% (8/22) included a validation set, and only 13.6% (3/22) were prospective. The area under the curve (AUC) range of using clinical and traditional imaging was 0.560 to 0.917. The AUC ranges of radiomics were 0.648 to 0.951, and the AUC ranges of deep learning were 0.718 to 0.820. Notably, the AUC ranges of combined models of clinical, imaging, radiomics and deep learning were 0.614 to 0.995. Nevertheless, the multicenter external data were limited, with only 13.6% (3/22) incorporating validation. The combined model integrating traditional imaging, radiomics and deep learning achieves excellent potential and performance for predicting CK19 in HCC. Based on current limitations, future research should focus on building an easy-to-use dynamic online tool, combining multicenter-multimodal imaging and advanced deep learning approaches to enhance the accuracy and robustness of model predictions.
Page 94 of 94933 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.