Sort by:
Page 93 of 2382377 results

Classification of Brain Tumors in MRI Images with Brain-CNXSAMNet: Integrating Hybrid ConvNeXt and Spatial Attention Module Networks.

Fırat H, Üzen H

pubmed logopapersJul 30 2025
Brain tumors (BT) can cause fatal outcomes by affecting body functions, making precise early detection via magnetic resonance imaging (MRI) examinations critical. The complex variations found in cells of BT may pose challenges in identifying the type of tumor and selecting the most suitable treatment strategy, potentially resulting in different assessments by doctors. As a result, in recent years, AI-powered diagnostic systems have been created to accurately and efficiently identify different types of BT using MRI images. Notably, state-of-the-art deep learning architectures, which have demonstrated efficacy in diverse domains, are now being employed effectively for classifying of brain MRI images. This research presents a hybrid model that integrates spatial attention mechanism (SAM) with ConvNeXt to classify three types of BT: meningioma, pituitary, and glioma. The hybrid model integrates ConvNeXt to enhance the receptive field, capturing information from a broader spatial context, crucial for recognizing tumor patterns spanning multiple pixels. SAM is applied after ConvNeXt, enabling the network to selectively focus on informative regions, thereby improving the model's ability to distinguish BT types and capture complex spatial relationships. Tested on BSF and Figshare datasets, the proposed model achieves a remarkable accuracy of 99.39% and 98.86%, respectively, outperforming the results of recent studies by achieving these results in fewer training periods. This hybrid model marks a major step forward in the automatic classification of BT, demonstrating superior performance in accuracy with efficient training.

Ultrasound derived deep learning features for predicting axillary lymph node metastasis in breast cancer using graph convolutional networks in a multicenter study.

Agyekum EA, Kong W, Agyekum DN, Issaka E, Wang X, Ren YZ, Tan G, Jiang X, Shen X, Qian X

pubmed logopapersJul 30 2025
The purpose of this study was to create and validate an ultrasound-based graph convolutional network (US-based GCN) model for the prediction of axillary lymph node metastasis (ALNM) in patients with breast cancer. A total of 820 eligible patients with breast cancer who underwent preoperative breast ultrasonography (US) between April 2016 and June 2022 were retrospectively enrolled. The training cohort consisted of 621 patients, whereas validation cohort 1 included 112 patients, and validation cohort 2 included 87 patients. A US-based GCN model was built using US deep learning features. In validation cohort 1, the US-based GCN model performed satisfactorily, with an AUC of 0.88 and an accuracy of 0.76. In validation cohort 2, the US-based GCN model performed satisfactorily, with an AUC of 0.84 and an accuracy of 0.75. This approach has the potential to help guide optimal ALNM management in breast cancer patients, particularly by preventing overtreatment. In conclusion, we developed a US-based GCN model to assess the ALN status of breast cancer patients prior to surgery. The US-based GCN model can provide a possible noninvasive method for detecting ALNM and aid in clinical decision-making. High-level evidence for clinical use in later studies is anticipated to be obtained through prospective studies.

A privacy preserving machine learning framework for medical image analysis using quantized fully connected neural networks with TFHE based inference.

Selvakumar S, Senthilkumar B

pubmed logopapersJul 30 2025
Medical image analysis using deep learning algorithms has become a basis of modern healthcare, enabling early detection, diagnosis, treatment planning, and disease monitoring. However, sharing sensitive raw medical data with third parties for analysis raises significant privacy concerns. This paper presents a privacy-preserving machine learning (PPML) framework using a Fully Connected Neural Network (FCNN) for secure medical image analysis using the MedMNIST dataset. The proposed PPML framework leverages a torus-based fully homomorphic encryption (TFHE) to ensure data privacy during inference, maintain patient confidentiality, and ensure compliance with privacy regulations. The FCNN model is trained in a plaintext environment for FHE compatibility using Quantization-Aware Training to optimize weights and activations. The quantized FCNN model is then validated under FHE constraints through simulation and compiled into an FHE-compatible circuit for encrypted inference on sensitive data. The proposed framework is evaluated on the MedMNIST datasets to assess its accuracy and inference time in both plaintext and encrypted environments. Experimental results reveal that the PPML framework achieves a prediction accuracy of 88.2% in the plaintext setting and 87.5% during encrypted inference, with an average inference time of 150 milliseconds per image. This shows that FCNN models paired with TFHE-based encryption achieve high prediction accuracy on MedMNIST datasets with minimal performance degradation compared to unencrypted inference.

WSDC-ViT: a novel transformer network for pneumonia image classification based on windows scalable attention and dynamic rectified linear unit convolutional modules.

Gu Y, Bai H, Chen M, Yang L, Zhang B, Wang J, Lu X, Li J, Liu X, Yu D, Zhao Y, Tang S, He Q

pubmed logopapersJul 30 2025
Accurate differential diagnosis of pneumonia remains a challenging task, as different types of pneumonia require distinct treatment strategies. Early and precise diagnosis is crucial for minimizing the risk of misdiagnosis and for effectively guiding clinical decision-making and monitoring treatment response. This study proposes the WSDC-ViT network to enhance computer-aided pneumonia detection and alleviate the diagnostic workload for radiologists. Unlike existing models such as Swin Transformer or CoAtNet, which primarily improve attention mechanisms through hierarchical designs or convolutional embedding, WSDC-ViT introduces a novel architecture that simultaneously enhances global and local feature extraction through a scalable self-attention mechanism and convolutional refinement. Specifically, the network integrates a scalable self-attention mechanism that decouples the query, key, and value dimensions to reduce computational overhead and improve contextual learning, while an interactive window-based attention module further strengthens long-range dependency modeling. Additionally, a convolution-based module equipped with a dynamic ReLU activation function is embedded within the transformer encoder to capture fine-grained local details and adaptively enhance feature expression. Experimental results demonstrate that the proposed method achieves an average classification accuracy of 95.13% and an F1-score of 95.63% on a chest X-ray dataset, along with 99.36% accuracy and a 99.34% F1-score on a CT dataset. These results highlight the model's superior performance compared to existing automated pneumonia classification approaches, underscoring its potential clinical applicability.

Refined prognostication of pathological complete response in breast cancer using radiomic features and optimized InceptionV3 with DCE-MRI.

Pattanayak S, Singh T, Kumar R

pubmed logopapersJul 30 2025
Neoadjuvant therapy plays a pivotal role in breast cancer treatment, particularly for patients aiming to conserve their breast by reducing tumor size pre-surgery. The ultimate goal of this treatment is achieving a pathologic complete response (pCR), which signifies the complete eradication of cancer cells, thereby lowering the likelihood of recurrence. This study introduces a novel predictive approach to identify patients likely to achieve pCR using radiomic features extracted from MR images, enhanced by the InceptionV3 model and cutting-edge validation methodologies. In our study, we gathered data from 255 unique Patient IDs sourced from the -SPY 2 MRI database with the goal of classifying pCR (pathological complete response). Our research introduced two key areas of novelty.Firstly, we explored the extraction of advanced features from the dcom series such as Area, Perimeter, Entropy, Intensity of the places where the intensity is more than the average intensity of the image. These features provided deeper insights into the characteristics of the MRI data and enhanced the discriminative power of our classification model.Secondly, we applied these extracted features along with combine pixel array of the dcom series of each patient to the numerous deep learning model along with InceptionV3 (GoogleNet) model which provides the best accuracy. To optimize the model's performance, we experimented with different combinations of loss functions, optimizer functions, and activation functions. Lastly, our classification results were subjected to validation using accuracy, AUC, Sensitivity, Specificity and F1 Score. These evaluation metrics provided a robust assessment of the model's performance and ensured the reliability of our findings. The successful combination of advanced feature extraction, utilization of the InceptionV3 model with tailored hyperparameters, and thorough validation using cutting-edge techniques significantly enhanced the accuracy and reliability of our pCR classification study. By adopting a collaborative approach that involved both radiologists and the computer-aided system, we achieved superior predictive performance for pCR, as evidenced by the impressive values obtained for the area under the curve (AUC) at 0.91 having an accuracy of .92. Overall, the combination of advanced feature extraction, leveraging the InceptionV3 model with customized hyperparameters, and rigorous validation using state-of-the-art techniques contributed to the accuracy and credibility of our pCR classification study.

Learning from Heterogeneous Structural MRI via Collaborative Domain Adaptation for Late-Life Depression Assessment

Yuzhen Gao, Qianqian Wang, Yongheng Sun, Cui Wang, Yongquan Liang, Mingxia Liu

arxiv logopreprintJul 30 2025
Accurate identification of late-life depression (LLD) using structural brain MRI is essential for monitoring disease progression and facilitating timely intervention. However, existing learning-based approaches for LLD detection are often constrained by limited sample sizes (e.g., tens), which poses significant challenges for reliable model training and generalization. Although incorporating auxiliary datasets can expand the training set, substantial domain heterogeneity, such as differences in imaging protocols, scanner hardware, and population demographics, often undermines cross-domain transferability. To address this issue, we propose a Collaborative Domain Adaptation (CDA) framework for LLD detection using T1-weighted MRIs. The CDA leverages a Vision Transformer (ViT) to capture global anatomical context and a Convolutional Neural Network (CNN) to extract local structural features, with each branch comprising an encoder and a classifier. The CDA framework consists of three stages: (a) supervised training on labeled source data, (b) self-supervised target feature adaptation and (c) collaborative training on unlabeled target data. We first train ViT and CNN on source data, followed by self-supervised target feature adaptation by minimizing the discrepancy between classifier outputs from two branches to make the categorical boundary clearer. The collaborative training stage employs pseudo-labeled and augmented target-domain MRIs, enforcing prediction consistency under strong and weak augmentation to enhance domain robustness and generalization. Extensive experiments conducted on multi-site T1-weighted MRI data demonstrate that the CDA consistently outperforms state-of-the-art unsupervised domain adaptation methods.

Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings

Dongli He, Hu Wang, Mohammad Yaqub

arxiv logopreprintJul 30 2025
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.

Label-free estimation of clinically relevant performance metrics under distribution shifts

Tim Flühmann, Alceu Bissoto, Trung-Dung Hoang, Lisa M. Koch

arxiv logopreprintJul 30 2025
Performance monitoring is essential for safe clinical deployment of image classification models. However, because ground-truth labels are typically unavailable in the target dataset, direct assessment of real-world model performance is infeasible. State-of-the-art performance estimation methods address this by leveraging confidence scores to estimate the target accuracy. Despite being a promising direction, the established methods mainly estimate the model's accuracy and are rarely evaluated in a clinical domain, where strong class imbalances and dataset shifts are common. Our contributions are twofold: First, we introduce generalisations of existing performance prediction methods that directly estimate the full confusion matrix. Then, we benchmark their performance on chest x-ray data in real-world distribution shifts as well as simulated covariate and prevalence shifts. The proposed confusion matrix estimation methods reliably predicted clinically relevant counting metrics on medical images under distribution shifts. However, our simulated shift scenarios exposed important failure modes of current performance estimation techniques, calling for a better understanding of real-world deployment contexts when implementing these performance monitoring techniques for postmarket surveillance of medical AI models.

Whole-brain Transferable Representations from Large-Scale fMRI Data Improve Task-Evoked Brain Activity Decoding

Yueh-Po Peng, Vincent K. M. Cheung, Li Su

arxiv logopreprintJul 30 2025
A fundamental challenge in neuroscience is to decode mental states from brain activity. While functional magnetic resonance imaging (fMRI) offers a non-invasive approach to capture brain-wide neural dynamics with high spatial precision, decoding from fMRI data -- particularly from task-evoked activity -- remains challenging due to its high dimensionality, low signal-to-noise ratio, and limited within-subject data. Here, we leverage recent advances in computer vision and propose STDA-SwiFT, a transformer-based model that learns transferable representations from large-scale fMRI datasets via spatial-temporal divided attention and self-supervised contrastive learning. Using pretrained voxel-wise representations from 995 subjects in the Human Connectome Project (HCP), we show that our model substantially improves downstream decoding performance of task-evoked activity across multiple sensory and cognitive domains, even with minimal data preprocessing. We demonstrate performance gains from larger receptor fields afforded by our memory-efficient attention mechanism, as well as the impact of functional relevance in pretraining data when fine-tuning on small samples. Our work showcases transfer learning as a viable approach to harness large-scale datasets to overcome challenges in decoding brain activity from fMRI data.

Radiation enteritis associated with temporal sequencing of total neoadjuvant therapy in locally advanced rectal cancer: a preliminary study.

Ma CY, Fu Y, Liu L, Chen J, Li SY, Zhang L, Zhou JY

pubmed logopapersJul 30 2025
This study aimed to develop and validate a multi-temporal magnetic resonance imaging (MRI)-based delta-radiomics model to accurately predict severe acute radiation enteritis risk in patients undergoing total neoadjuvant therapy (TNT) for locally advanced rectal cancer (LARC). A retrospective analysis was conducted on the data from 92 patients with LARC who received TNT. All patients underwent pelvic MRI at baseline (pre-treatment) and after neoadjuvant radiotherapy (post-RT). Radiomic features of the primary tumor region were extracted from T2-weighted images at both timepoints. Four delta feature strategies were defined (absolute difference, percent change, ratio, and feature fusion) by concatenating pre- and post-RT features. Severe acute radiation enteritis (SARE) was defined as a composite CTCAE-based symptom score of ≥ 3 within the first 2 weeks of radiotherapy. Features were selected via statistical evaluation and least absolute shrinkage and selection operator regression. Support vector machine (SVM) classifiers were trained using baseline, post-RT, delta, and combined radiomic and clinical features. Model performance was evaluated in an independent test set based on the area under the curve (AUC) value and other metrics. Only the delta-fusion strategy retained stable radiomic features after selection, and outperformed the difference, percent, and ratio definitions in terms of feature stability and model performance. The SVM model, based on combined delta-fusion radiomics and clinical variables, demonstrated the best predictive performance and generalizability. In the independent test cohort, this combined model demonstrated an AUC value of 0.711, sensitivity of 88.9%, and F1-score of 0.696; these values surpassed those of models built with baseline-only or delta difference features. Integrating multi-temporal radiomic features via delta-fusion with clinical factors markedly improved early prediction of SARE in LARC. The delta-fusion approach outperformed conventional delta calculations, and demonstrated superior predictive performance. This highlights its potential in guiding individualized TNT sequencing and proactive toxicity management. NA.
Page 93 of 2382377 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.