Sort by:
Page 91 of 94940 results

Brain connectome gradient dysfunction in patients with end-stage renal disease and its association with clinical phenotype and cognitive deficits.

Li P, Li N, Ren L, Yang YP, Zhu XY, Yuan HJ, Luo ZY, Mu JY, Wang W, Zhang M

pubmed logopapersMay 6 2025
A cortical hierarchical architecture is vital for encoding and integrating sensorimotor-to-cognitive information. However, whether this gradient structure is disrupted in end-stage renal disease (ESRD) patients and how this disruption provides valuable information for potential clinical symptoms remain unknown. We prospectively enrolled 77 ESRD patients and 48 healthy controls. Using resting-state functional magnetic resonance imaging, we studied ESRD-related hierarchical alterations. The Neurosynth platform and machine-learning models with 10-fold cross-validation were applied. ESRD patients had abnormal gradient metrics in core regions of the default mode network, sensorimotor network, and frontoparietal network. These changes correlated with creatinine, depression, and cognitive functions. A logistic regression classifier achieved a maximum performance of 84.8% accuracy and 0.901 area under the ROC curve (AUC). Our results highlight hierarchical imbalances in ESRD patients that correlate with diverse cognitive deficits, which may be used as potential neuroimaging markers for clinical symptoms.

A Vision-Language Model for Focal Liver Lesion Classification

Song Jian, Hu Yuchang, Wang Hui, Chen Yen-Wei

arxiv logopreprintMay 6 2025
Accurate classification of focal liver lesions is crucial for diagnosis and treatment in hepatology. However, traditional supervised deep learning models depend on large-scale annotated datasets, which are often limited in medical imaging. Recently, Vision-Language models (VLMs) such as Contrastive Language-Image Pre-training model (CLIP) has been applied to image classifications. Compared to the conventional convolutional neural network (CNN), which classifiers image based on visual information only, VLM leverages multimodal learning with text and images, allowing it to learn effectively even with a limited amount of labeled data. Inspired by CLIP, we pro-pose a Liver-VLM, a model specifically designed for focal liver lesions (FLLs) classification. First, Liver-VLM incorporates class information into the text encoder without introducing additional inference overhead. Second, by calculating the pairwise cosine similarities between image and text embeddings and optimizing the model with a cross-entropy loss, Liver-VLM ef-fectively aligns image features with class-level text features. Experimental results on MPCT-FLLs dataset demonstrate that the Liver-VLM model out-performs both the standard CLIP and MedCLIP models in terms of accuracy and Area Under the Curve (AUC). Further analysis shows that using a lightweight ResNet18 backbone enhances classification performance, particularly under data-constrained conditions.

Stacking classifiers based on integrated machine learning model: fusion of CT radiomics and clinical biomarkers to predict lymph node metastasis in locally advanced gastric cancer patients after neoadjuvant chemotherapy.

Ling T, Zuo Z, Huang M, Ma J, Wu L

pubmed logopapersMay 6 2025
The early prediction of lymph node positivity (LN+) after neoadjuvant chemotherapy (NAC) is crucial for optimizing individualized treatment strategies. This study aimed to integrate radiomic features and clinical biomarkers through machine learning (ML) approaches to enhance prediction accuracy by focusing on patients with locally advanced gastric cancer (LAGC). We retrospectively enrolled 277 patients with LAGC and randomly divided them into training (n = 193) and validation (n = 84) sets at a 7:3 ratio. In total, 1,130 radiomics features were extracted from pre-treatment portal venous phase computed tomography scans. These features were linearly combined to develop a radiomics score (rad score) through feature engineering. Then, using the rad score and clinical biomarkers as input features, we applied simple statistical strategies (relying on a single ML model) and integrated statistical strategies (including classification model integration techniques, such as hard voting, soft voting, and stacking) to predict LN+ post-NAC. The diagnostic performance of the model was assessed using receiver operating characteristic curves with corresponding areas under the curve (AUC). Of all ML models, the stacking classifier, an integrated statistical strategy, exhibited the best performance, achieving an AUC of 0.859 for predicting LN+ in patients with LAGC. This predictive model was transformed into a publicly available online risk calculator. We developed a stacking classifier that integrates radiomics and clinical biomarkers to predict LN+ in patients with LAGC undergoing surgical resection, providing personalized treatment insights.

STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis

Yiran Zhu, Wei Yang, Yan su, Zesheng Li, Chengchang Pan, Honggang Qi

arxiv logopreprintMay 6 2025
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.

Deep Learning for Classification of Solid Renal Parenchymal Tumors Using Contrast-Enhanced Ultrasound.

Bai Y, An ZC, Du LF, Li F, Cai YY

pubmed logopapersMay 6 2025
The purpose of this study is to assess the ability of deep learning models to classify different subtypes of solid renal parenchymal tumors using contrast-enhanced ultrasound (CEUS) images and to compare their classification performance. A retrospective study was conducted using CEUS images of 237 kidney tumors, including 46 angiomyolipomas (AML), 118 clear cell renal cell carcinomas (ccRCC), 48 papillary RCCs (pRCC), and 25 chromophobe RCCs (chRCC), collected from January 2017 to December 2019. Two deep learning models, based on the ResNet-18 and RepVGG architectures, were trained and validated to distinguish between these subtypes. The models' performance was assessed using sensitivity, specificity, positive predictive value, negative predictive value, F1 score, Matthews correlation coefficient, accuracy, area under the receiver operating characteristic curve (AUC), and confusion matrix analysis. Class activation mapping (CAM) was applied to visualize the specific regions that contributed to the models' predictions. The ResNet-18 and RepVGG-A0 models achieved an overall accuracy of 76.7% and 84.5% across all four subtypes. The AUCs for AML, ccRCC, pRCC, and chRCC were 0.832, 0.829, 0.806, and 0.795 for the ResNet-18 model, compared to 0.906, 0.911, 0.840, and 0.827 for the RepVGG-A0 model, respectively. The deep learning models could reliably differentiate between various histological subtypes of renal tumors using CEUS images in an objective and non-invasive manner.

Comprehensive Cerebral Aneurysm Rupture Prediction: From Clustering to Deep Learning

Zakeri, M., Atef, A., Aziznia, M., Jafari, A.

medrxiv logopreprintMay 6 2025
Cerebral aneurysm is a silent yet prevalent condition that affects a substantial portion of the global population. Aneurysms can develop due to various factors and present differently, necessitating diverse treatment approaches. Choosing the appropriate treatment upon diagnosis is paramount, as the severity of the disease dictates the course of action. The vulnerability of an aneurysm, particularly in the circle of Willis, is a critical concern; rupture can lead to irreversible consequences, including death. The primary objective of this study is to predict the rupture status of cerebral aneurysms using a comprehensive dataset that includes clinical, morphological, and hemodynamic data extracted from blood flow simulations of patients with actual vessels. Our goal is to provide valuable insights that can aid in treatment decision-making and potentially save the lives of future patients. Diagnosing and predicting the rupture status of aneurysms based solely on brain scans poses a significant challenge, often with limited accuracy, even for experienced physicians. However, harnessing statistical and machine learning (ML) techniques can enhance rupture prediction and treatment strategy selection. We employed a diverse set of supervised and unsupervised algorithms, training them on a database comprising over 700 cerebral aneurysms, which included 55 different parameters: 3 clinical, 35 morphological, and 17 hemodynamic features. Two of our models including stochastic gradient descent (SGD) and multi-layer perceptron (MLP) achieved a maximum area under the curve (AUC) of 0.86, a precision rate of 0.86, and a recall rate of 0.90 for prediction of cerebral aneurysm rupture. Given the sensitivity of the data and the critical nature of the condition, recall is a more vital parameter than accuracy and precision; our study achieved an acceptable recall score. Key features for rupture prediction included ellipticity index, low shear area ratio, and irregularity. Additionally, a one-dimensional CNN model predicted rupture status along a continuous spectrum, achieving 0.78 accuracy on the testing dataset, providing nuanced insights into rupture propensity.

Molecular mechanisms explaining sex-specific functional connectivity changes in chronic insomnia disorder.

Yu L, Shen Z, Wei W, Dou Z, Luo Y, Hu D, Lin W, Zhao G, Hong X, Yu S

pubmed logopapersMay 6 2025
This study investigates the hypothesis that chronic insomnia disorder (CID) is characterized by sex-specific changes in resting-state functional connectivity (rsFC), with certain molecular mechanisms potentially influencing CID's pathophysiology by altering rsFC in relevant networks. Utilizing a resting-state functional magnetic resonance imaging (fMRI) dataset of 395 participants, including 199 CID patients and 196 healthy controls, we examined sex-specific rsFC effects, particularly in the default mode network (DMN) and five insomnia-genetically vulnerable regions of interest (ROIs). By integrating gene expression data from the Allen Human Brain Atlas, we identified genes linked to these sex-specific rsFC alterations and conducted enrichment analysis to uncover underlying molecular mechanisms. Additionally, we simulated the impact of sex differences in rsFC with different sex compositions in our dataset and employed machine learning classifiers to distinguish CID from healthy controls based on sex-specific rsFC data. We identified both shared and sex-specific rsFC changes in the DMN and the five genetically vulnerable ROIs, with gene expression variations associated with these sex-specific connectivity differences. Enrichment analysis highlighted genes involved in synaptic signaling, ion channels, and immune function as potential contributors to CID pathophysiology through their influence on connectivity. Furthermore, our findings demonstrate that different sex compositions significantly affect study outcomes and higher diagnostic performance in sex-specific rsFC data than combined sex. This study uncovered both shared and sex-specific connectivity alterations in CID, providing molecular insights into its pathophysiology and suggesting considering sex differences in future fMRI-based diagnostic and treatment strategies.

Diagnosis of Sarcopenia Using Convolutional Neural Network Models Based on Muscle Ultrasound Images: Prospective Multicenter Study.

Chen ZT, Li XL, Jin FS, Shi YL, Zhang L, Yin HH, Zhu YL, Tang XY, Lin XY, Lu BL, Wang Q, Sun LP, Zhu XX, Qiu L, Xu HX, Guo LH

pubmed logopapersMay 6 2025
Early detection is clinically crucial for the strategic handling of sarcopenia, yet the screening process, which includes assessments of muscle mass, strength, and function, remains complex and difficult to access. This study aims to develop a convolutional neural network model based on ultrasound images to simplify the diagnostic process and promote its accessibility. This study prospectively evaluated 357 participants (101 with sarcopenia and 256 without sarcopenia) for training, encompassing three types of data: muscle ultrasound images, clinical information, and laboratory information. Three monomodal models based on each data type were developed in the training cohort. The data type with the best diagnostic performance was selected to develop the bimodal and multimodal model by adding another one or two data types. Subsequently, the diagnostic performance of the above models was compared. The contribution ratios of different data types were further analyzed for the multimodal model. A sensitivity analysis was performed by excluding 86 cases with missing values and retaining 271 complete cases for robustness validation. By comprehensive comparison, we finally identified the optimal model (SARCO model) as the convenient solution. Moreover, the SARCO model underwent an external validation with 145 participants (68 with sarcopenia and 77 without sarcopenia) and a proof-of-concept validation with 82 participants (19 with sarcopenia and 63 without sarcopenia) from two other hospitals. The monomodal model based on ultrasound images achieved the highest area under the receiver operator characteristic curve (AUC) of 0.827 and F1-score of 0.738 among the three monomodal models. Sensitivity analysis on complete data further confirmed the superiority of the ultrasound images model (AUC: 0.851; F1-score: 0.698). The performance of the multimodal model demonstrated statistical differences compared to the best monomodal model (AUC: 0.845 vs 0.827; P=.02) as well as the two bimodal models based on ultrasound images+clinical information (AUC: 0.845 vs 0.826; P=.03) and ultrasound images+laboratory information (AUC: 0.845 vs 0.832, P=0.035). On the other hand, ultrasound images contributed the most evidence for diagnosing sarcopenia (0.787) and nonsarcopenia (0.823) in the multimodal models. Sensitivity analysis showed consistent performance trends, with ultrasound images remaining the dominant contributor (Shapley additive explanation values: 0.810 for sarcopenia and 0.795 for nonsarcopenia). After comprehensive clinical analysis, the monomodal model based on ultrasound images was identified as the SARCO model. Subsequently, the SARCO model achieved satisfactory prediction performance in the external validation and proof-of-concept validation, with AUCs of 0.801 and 0.757 and F1-scores of 0.727 and 0.666, respectively. All three types of data contributed to sarcopenia diagnosis, while ultrasound images played a dominant role in model decision-making. The SARCO model based on ultrasound images is potentially the most convenient solution for diagnosing sarcopenia. Chinese Clinical Trial Registry ChiCTR2300073651; https://www.chictr.org.cn/showproj.html?proj=199199.

Artificial intelligence applications for the diagnosis of pulmonary nodules.

Ost DE

pubmed logopapersMay 6 2025
This review evaluates the role of artificial intelligence (AI) in diagnosing solitary pulmonary nodules (SPNs), focusing on clinical applications and limitations in pulmonary medicine. It explores AI's utility in imaging and blood/tissue-based diagnostics, emphasizing practical challenges over technical details of deep learning methods. AI enhances computed tomography (CT)-based computer-aided diagnosis (CAD) through steps like nodule detection, false positive reduction, segmentation, and classification, leveraging convolutional neural networks and machine learning. Segmentation achieves Dice similarity coefficients of 0.70-0.92, while malignancy classification yields areas under the curve of 0.86-0.97. AI-driven blood tests, incorporating RNA sequencing and clinical data, report AUCs up to 0.907 for distinguishing benign from malignant nodules. However, most models lack prospective, multiinstitutional validation, risking overfitting and limited generalizability. The "black box" nature of AI, coupled with overlapping inputs (e.g., nodule size, smoking history) with physician assessments, complicates integration into clinical workflows and precludes standard Bayesian analysis. AI shows promise for SPN diagnosis but requires rigorous validation in diverse populations and better clinician training for effective use. Rather than replacing judgment, AI should serve as a second opinion, with its reported performance metrics understood as study-specific, not directly applicable at the bedside due to double-counting issues.

From manual clinical criteria to machine learning algorithms: Comparing outcome endpoints derived from diverse electronic health record data modalities.

Chappidi S, Belue MJ, Harmon SA, Jagasia S, Zhuge Y, Tasci E, Turkbey B, Singh J, Camphausen K, Krauze AV

pubmed logopapersMay 1 2025
Progression free survival (PFS) is a critical clinical outcome endpoint during cancer management and treatment evaluation. Yet, PFS is often missing from publicly available datasets due to the current subjective, expert, and time-intensive nature of generating PFS metrics. Given emerging research in multi-modal machine learning (ML), we explored the benefits and challenges associated with mining different electronic health record (EHR) data modalities and automating extraction of PFS metrics via ML algorithms. We analyzed EHR data from 92 pathology-proven GBM patients, obtaining 233 corticosteroid prescriptions, 2080 radiology reports, and 743 brain MRI scans. Three methods were developed to derive clinical PFS: 1) frequency analysis of corticosteroid prescriptions, 2) natural language processing (NLP) of reports, and 3) computer vision (CV) volumetric analysis of imaging. Outputs from these methods were compared to manually annotated clinical guideline PFS metrics. Employing data-driven methods, standalone progression rates were 63% (prescription), 78% (NLP), and 54% (CV), compared to the 99% progression rate from manually applied clinical guidelines using integrated data sources. The prescription method identified progression an average of 5.2 months later than the clinical standard, while the CV and NLP algorithms identified progression earlier by 2.6 and 6.9 months, respectively. While lesion growth is a clinical guideline progression indicator, only half of patients exhibited increasing contrast-enhancing tumor volumes during scan-based CV analysis. Our results indicate that data-driven algorithms can extract tumor progression outcomes from existing EHR data. However, ML methods are subject to varying availability bias, supporting contextual information, and pre-processing resource burdens that influence the extracted PFS endpoint distributions. Our scan-based CV results also suggest that the automation of clinical criteria may not align with human intuition. Our findings indicate a need for improved data source integration, validation, and revisiting of clinical criteria in parallel to multi-modal ML algorithm development.
Page 91 of 94940 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.