Sort by:
Page 91 of 1421412 results

HyperSORT: Self-Organising Robust Training with hyper-networks

Samuel Joutard, Marijn Stollenga, Marc Balle Sanchez, Mohammad Farid Azampour, Raphael Prevost

arxiv logopreprintJun 26 2025
Medical imaging datasets often contain heterogeneous biases ranging from erroneous labels to inconsistent labeling styles. Such biases can negatively impact deep segmentation networks performance. Yet, the identification and characterization of such biases is a particularly tedious and challenging task. In this paper, we introduce HyperSORT, a framework using a hyper-network predicting UNets' parameters from latent vectors representing both the image and annotation variability. The hyper-network parameters and the latent vector collection corresponding to each data sample from the training set are jointly learned. Hence, instead of optimizing a single neural network to fit a dataset, HyperSORT learns a complex distribution of UNet parameters where low density areas can capture noise-specific patterns while larger modes robustly segment organs in differentiated but meaningful manners. We validate our method on two 3D abdominal CT public datasets: first a synthetically perturbed version of the AMOS dataset, and TotalSegmentator, a large scale dataset containing real unknown biases and errors. Our experiments show that HyperSORT creates a structured mapping of the dataset allowing the identification of relevant systematic biases and erroneous samples. Latent space clusters yield UNet parameters performing the segmentation task in accordance with the underlying learned systematic bias. The code and our analysis of the TotalSegmentator dataset are made available: https://github.com/ImFusionGmbH/HyperSORT

Computed tomography-derived quantitative imaging biomarkers enable the prediction of disease manifestations and survival in patients with systemic sclerosis.

Sieren MM, Grasshoff H, Riemekasten G, Berkel L, Nensa F, Hosch R, Barkhausen J, Kloeckner R, Wegner F

pubmed logopapersJun 25 2025
Systemic sclerosis (SSc) is a complex inflammatory vasculopathy with diverse symptoms and variable disease progression. Despite its known impact on body composition (BC), clinical decision-making has yet to incorporate these biomarkers. This study aims to extract quantitative BC imaging biomarkers from CT scans to assess disease severity, define BC phenotypes, track changes over time and predict survival. CT exams were extracted from a prospectively maintained cohort of 452 SSc patients. 128 patients with at least one CT exam were included. An artificial intelligence-based 3D body composition analysis (BCA) algorithm assessed muscle volume, different adipose tissue compartments, and bone mineral density. These parameters were analysed with regard to various clinical, laboratory, functional parameters and survival. Phenotypes were identified performing K-means cluster analysis. Longitudinal evaluation of BCA changes employed regression analyses. A regression model using BCA parameters outperformed models based on Body Mass Index and clinical parameters in predicting survival (area under the curve (AUC)=0.75). Longitudinal development of the cardiac marker enabled prediction of survival with an AUC=0.82. Patients with altered BCA parameters had increased ORs for various complications, including interstitial lung disease (p<0.05). Two distinct BCA phenotypes were identified, showing significant differences in gastrointestinal disease manifestations (p<0.01). This study highlights several parameters with the potential to reshape clinical pathways for SSc patients. Quantitative BCA biomarkers offer a means to predict survival and individual disease manifestations, in part outperforming established parameters. These insights open new avenues for research into the mechanisms driving body composition changes in SSc and for developing enhanced disease management tools, ultimately leading to more personalised and effective patient care.

Opportunistic Osteoporosis Diagnosis via Texture-Preserving Self-Supervision, Mixture of Experts and Multi-Task Integration

Jiaxing Huang, Heng Guo, Le Lu, Fan Yang, Minfeng Xu, Ge Yang, Wei Luo

arxiv logopreprintJun 25 2025
Osteoporosis, characterized by reduced bone mineral density (BMD) and compromised bone microstructure, increases fracture risk in aging populations. While dual-energy X-ray absorptiometry (DXA) is the clinical standard for BMD assessment, its limited accessibility hinders diagnosis in resource-limited regions. Opportunistic computed tomography (CT) analysis has emerged as a promising alternative for osteoporosis diagnosis using existing imaging data. Current approaches, however, face three limitations: (1) underutilization of unlabeled vertebral data, (2) systematic bias from device-specific DXA discrepancies, and (3) insufficient integration of clinical knowledge such as spatial BMD distribution patterns. To address these, we propose a unified deep learning framework with three innovations. First, a self-supervised learning method using radiomic representations to leverage unlabeled CT data and preserve bone texture. Second, a Mixture of Experts (MoE) architecture with learned gating mechanisms to enhance cross-device adaptability. Third, a multi-task learning framework integrating osteoporosis diagnosis, BMD regression, and vertebra location prediction. Validated across three clinical sites and an external hospital, our approach demonstrates superior generalizability and accuracy over existing methods for opportunistic osteoporosis screening and diagnosis.

EAGLE: An Efficient Global Attention Lesion Segmentation Model for Hepatic Echinococcosis

Jiayan Chen, Kai Li, Yulu Zhao, Jianqiang Huang, Zhan Wang

arxiv logopreprintJun 25 2025
Hepatic echinococcosis (HE) is a widespread parasitic disease in underdeveloped pastoral areas with limited medical resources. While CNN-based and Transformer-based models have been widely applied to medical image segmentation, CNNs lack global context modeling due to local receptive fields, and Transformers, though capable of capturing long-range dependencies, are computationally expensive. Recently, state space models (SSMs), such as Mamba, have gained attention for their ability to model long sequences with linear complexity. In this paper, we propose EAGLE, a U-shaped network composed of a Progressive Visual State Space (PVSS) encoder and a Hybrid Visual State Space (HVSS) decoder that work collaboratively to achieve efficient and accurate segmentation of hepatic echinococcosis (HE) lesions. The proposed Convolutional Vision State Space Block (CVSSB) module is designed to fuse local and global features, while the Haar Wavelet Transformation Block (HWTB) module compresses spatial information into the channel dimension to enable lossless downsampling. Due to the lack of publicly available HE datasets, we collected CT slices from 260 patients at a local hospital. Experimental results show that EAGLE achieves state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 89.76%, surpassing MSVM-UNet by 1.61%.

Accuracy and Efficiency of Artificial Intelligence and Manual Virtual Segmentation for Generation of 3D Printed Tooth Replicas.

Pedrinaci I, Nasseri A, Calatrava J, Couso-Queiruga E, Giannobile WV, Gallucci GO, Sanz M

pubmed logopapersJun 25 2025
The primary aim of this in vitro study was to compare methods for generating 3D-printed replicas through virtual segmentation, utilizing artificial intelligence (AI) or manual processes, by assessing accuracy in terms of volumetric and linear discrepancies. The secondary aims were the assessment of time efficiency with both segmentation methods, and the effect of post-processing on 3D-printed replicas. Thirty teeth were scanned through Cone Beam Computed Tomography (CBCT), capturing the region of interest from human subjects. DICOM files underwent virtual segmentation through both AI and manual methods. Replicas were fabricated with a stereolithography 3D printer. After surface scanning of pre-processed replicas and extracted teeth, STL files were superimposed to compare linear and volumetric differences using the extracted teeth as the reference. Post-processed replicas were scanned to assess the effect of post-processing on linear and volumetric changes. AI-driven segmentation resulted in statistically significant mean linear and volumetric differences of -0.709mm (SD 0.491, P< 0.001) and -4.70%, respectively. Manual segmentation showed no statistically significant differences in mean linear, -0.463mm (SD 0.335, P<0.001) and volumetric (-1.20%) measures. Comparing manual and AI-driven segmentations, AI-driven segmentation displayed mean linear and volumetric differences of -0.329mm (SD 0.566, p=0.003) and -2.23%, respectively. Additionally, AI segmentation reduced the mean time by 21.8 minutes. When comparing post-processed to pre-processed replicas, there was a volumetric reduction of -4.53% and a mean linear difference of -0.151mm (SD 0.564, p=0.042). Both segmentation methods achieved acceptable accuracy, with manual segmentation slightly more accurate but AI-driven segmentation more time-efficient. Continuous improvement in AI offers the potential for increased accuracy, efficiency, and broader application in the future.

BronchoGAN: anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy.

Soliman A, Keuth R, Himstedt M

pubmed logopapersJun 25 2025
Purpose The limited availability of bronchoscopy images makes image synthesis particularly interesting for training deep learning models. Robust image translation across different domains-virtual bronchoscopy, phantom as well as in vivo and ex vivo image data-is pivotal for clinical applications. Methods This paper proposes BronchoGAN introducing anatomical constraints for image-to-image translation being integrated into a conditional GAN. In particular, we force bronchial orifices to match across input and output images. We further propose to use foundation model-generated depth images as intermediate representation ensuring robustness across a variety of input domains establishing models with substantially less reliance on individual training datasets. Moreover, our intermediate depth image representation allows to easily construct paired image data for training. Results Our experiments showed that input images from different domains (e.g., virtual bronchoscopy, phantoms) can be successfully translated to images mimicking realistic human airway appearance. We demonstrated that anatomical settings (i.e., bronchial orifices) can be robustly preserved with our approach which is shown qualitatively and quantitatively by means of improved FID, SSIM and dice coefficients scores. Our anatomical constraints enabled an improvement in the Dice coefficient of up to 0.43 for synthetic images. Conclusion Through foundation models for intermediate depth representations and bronchial orifice segmentation integrated as anatomical constraints into conditional GANs, we are able to robustly translate images from different bronchoscopy input domains. BronchoGAN allows to incorporate public CT scan data (virtual bronchoscopy) in order to generate large-scale bronchoscopy image datasets with realistic appearance. BronchoGAN enables to bridge the gap of missing public bronchoscopy images.

Aneurysm Analysis Using Deep Learning

Bagheri Rajeoni, A., Pederson, B., Lessner, S. M., Valafar, H.

medrxiv logopreprintJun 25 2025
Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard-of-care primarily focuses on measuring aneurysm diameter at its widest point, providing a limited perspective on aneurysm morphology and lacking efficient methods to measure aneurysm volumes. Yet, volume measurement can offer deeper insight into aneurysm progression and severity. In this study, we propose an automated approach that leverages the strengths of pre-trained neural networks and expert systems to delineate aneurysm boundaries and compute volumes on an unannotated dataset from 60 patients. The dataset includes slice-level start/end annotations for aneurysm but no pixel-wise aorta segmentations. Our method utilizes a pre-trained UNet to automatically locate the aorta, employs SAM2 to track the aorta through vascular irregularities such as aneurysms down to the iliac bifurcation, and finally uses a Long Short-Term Memory (LSTM) network or expert system to identify the beginning and end points of the aneurysm within the aorta. Despite no manual aorta segmentation, our approach achieves promising accuracy, predicting the aneurysm start point with an R2 score of 71%, the end point with an R2 score of 76%, and the volume with an R2 score of 92%. This technique has the potential to facilitate large-scale aneurysm analysis and improve clinical decision-making by reducing dependence on annotated datasets.

How well do multimodal LLMs interpret CT scans? An auto-evaluation framework for analyses.

Zhu Q, Hou B, Mathai TS, Mukherjee P, Jin Q, Chen X, Wang Z, Cheng R, Summers RM, Lu Z

pubmed logopapersJun 25 2025
This study introduces a novel evaluation framework, GPTRadScore, to systematically assess the performance of multimodal large language models (MLLMs) in generating clinically accurate findings from CT imaging. Specifically, GPTRadScore leverages LLMs as an evaluation metric, aiming to provide a more accurate and clinically informed assessment than traditional language-specific methods. Using this framework, we evaluate the capability of several MLLMs, including GPT-4 with Vision (GPT-4V), Gemini Pro Vision, LLaVA-Med, and RadFM, to interpret findings in CT scans. This retrospective study leverages a subset of the public DeepLesion dataset to evaluate the performance of several multimodal LLMs in describing findings in CT slices. GPTRadScore was developed to assess the generated descriptions (location, body part, and type) using GPT-4, alongside traditional metrics. RadFM was fine-tuned using a subset of the DeepLesion dataset with additional labeled examples targeting complex findings. Post fine-tuning, performance was reassessed using GPTRadScore to measure accuracy improvements. Evaluations demonstrated a high correlation of GPTRadScore with clinician assessments, with Pearson's correlation coefficients of 0.87, 0.91, 0.75, 0.90, and 0.89. These results highlight its superiority over traditional metrics, such as BLEU, METEOR, and ROUGE, and indicate that GPTRadScore can serve as a reliable evaluation metric. Using GPTRadScore, it was observed that while GPT-4V and Gemini Pro Vision outperformed other models, significant areas for improvement remain, primarily due to limitations in the datasets used for training. Fine-tuning RadFM resulted in substantial accuracy gains: location accuracy increased from 3.41% to 12.8%, body part accuracy improved from 29.12% to 53%, and type accuracy rose from 9.24% to 30%. These findings reinforce the hypothesis that fine-tuning RadFM can significantly enhance its performance. GPT-4 effectively correlates with expert assessments, validating its use as a reliable metric for evaluating multimodal LLMs in radiological diagnostics. Additionally, the results underscore the efficacy of fine-tuning approaches in improving the descriptive accuracy of LLM-generated medical imaging findings.

Diagnostic Performance of Radiomics for Differentiating Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

Wang D, Sun L

pubmed logopapersJun 25 2025
Differentiating intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) is essential for selecting the most effective treatment strategies. However, traditional imaging modalities and serum biomarkers often lack sufficient specificity. Radiomics, a sophisticated image analysis approach that derives quantitative data from medical imaging, has emerged as a promising non-invasive tool. To systematically review and meta-analyze the radiomics diagnostic accuracy in differentiating ICC from HCC. PubMed, EMBASE, and Web of Science databases were systematically searched through January 24, 2025. Studies evaluating radiomics models for distinguishing ICC from HCC were included. Assessing the quality of included studies was done by using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and METhodological RadiomICs Score tools. Pooled sensitivity, specificity, and area under the curve (AUC) were calculated using a bivariate random-effects model. Subgroup and publication bias analyses were also performed. 12 studies with 2541 patients were included, with 14 validation cohorts entered into meta-analysis. The pooled sensitivity and specificity of radiomics models were 0.82 (95% CI: 0.76-0.86) and 0.90 (95% CI: 0.85-0.93), respectively, with an AUC of 0.88 (95% CI: 0.85-0.91). Subgroup analyses revealed variations based on segmentation method, software used, and sample size, though not all differences were statistically significant. Publication bias was not detected. Radiomics demonstrates high diagnostic accuracy in distinguishing ICC from HCC and offers a non-invasive adjunct to conventional diagnostics. Further prospective, multicenter studies with standardized workflows are needed to enhance clinical applicability and reproducibility.

AI-based CT assessment of sarcopenia in borderline resectable pancreatic Cancer: A narrative review of clinical and technical perspectives.

Gehin W, Lambert A, Bibault JE

pubmed logopapersJun 25 2025
Sarcopenia, defined as the progressive loss of skeletal muscle mass and function, has been associated with poor prognosis in patients with pancreatic cancer, particularly those with borderline resectable pancreatic cancer (BRPC). Although body composition can be extracted from routine CT imaging, sarcopenia assessment remains underused in clinical practice. Recent advances in artificial intelligence (AI) offer the potential to automate and standardize this process, but their clinical translation remains limited. This narrative review aims to critically evaluate (1) the clinical impact of CT-defined sarcopenia in BRPC, and (2) the performance and maturity of AI-based methods for automated muscle and fat segmentation on CT images. A dual-axis literature search was conducted to identify clinical studies assessing the prognostic role of sarcopenia in BRPC, and technical studies developing AI-based segmentation models for body composition analysis. Structured data extraction was applied to 13 clinical and 71 technical studies. A PRISMA-inspired flow diagram was included to ensure methodological transparency. Sarcopenia was consistently associated with worse survival and treatment tolerance in BRPC, yet clinical definitions and cut-offs varied widely. AI models-mostly 2D U-Nets trained on L3-level CT slices-achieved high segmentation accuracy (mean DSC >0.93), but external validation and standardization were often lacking. CT-based AI assessment of sarcopenia holds promise for improving patient stratification in BRPC. However, its clinical adoption will require standardization, integration into decision-support frameworks, and prospective validation across diverse populations.
Page 91 of 1421412 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.