Sort by:
Page 91 of 2412401 results

Robust Training with Data Augmentation for Medical Imaging Classification

Josué Martínez-Martínez, Olivia Brown, Mostafa Karami, Sheida Nabavi

arxiv logopreprintJun 20 2025
Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.

Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network

Mahin Montasir Afif, Abdullah Al Noman, K. M. Tahsin Kabir, Md. Mortuza Ahmmed, Md. Mostafizur Rahman, Mufti Mahmud, Md. Ashraful Babu

arxiv logopreprintJun 20 2025
Generative Adversarial Networks (GAN) have shown potential in expanding limited medical imaging datasets. This study explores how different ratios of GAN-generated and real brain tumor MRI images impact the performance of a CNN in classifying healthy vs. tumorous scans. A DCGAN was used to create synthetic images which were mixed with real ones at various ratios to train a custom CNN. The CNN was then evaluated on a separate real-world test set. Our results indicate that the model maintains high sensitivity and precision in tumor classification, even when trained predominantly on synthetic data. When only a small portion of GAN data was added, such as 900 real images and 100 GAN images, the model achieved excellent performance, with test accuracy reaching 95.2%, and precision, recall, and F1-score all exceeding 95%. However, as the proportion of GAN images increased further, performance gradually declined. This study suggests that while GANs are useful for augmenting limited datasets especially when real data is scarce, too much synthetic data can introduce artifacts that affect the model's ability to generalize to real world cases.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

Significance of Papillary and Trabecular Muscular Volume in Right Ventricular Volumetry with Cardiac MR Imaging.

Shibagaki Y, Oka H, Imanishi R, Shimada S, Nakau K, Takahashi S

pubmed logopapersJun 20 2025
Pulmonary valve regurgitation after repaired Tetralogy of Fallot (TOF) or double-outlet right ventricle (DORV) causes hypertrophy and papillary muscle enlargement. Cardiac magnetic resonance imaging (CMR) can evaluate the right ventricular (RV) dilatation, but the effect of trabecular and papillary muscle (TPM) exclusion on RV volume for TOF or DORV reoperation decision is unclear. Twenty-three patients with repaired TOF or DORV, and 19 healthy controls aged ≥15, underwent CMR from 2012 to 2022. TPM volume is measured by artificial intelligence. Reoperation was considered when RV end-diastolic volume index (RVEDVI) >150 mL/m<sup>2</sup> or RV end-systolic volume index (RVESVI) >80 mL/m<sup>2</sup>. RV volumes were higher in the disease group than controls (P α 0.001). RV mass and TPM volumes were higher in the disease group (P α 0.001). The reduction rate of RV volumes due to the exclusion of TPM volume was 6.3% (2.1-10.5), 11.7% (6.9-13.8), and 13.9% (9.5-19.4) in the control, volume load, and volume α pressure load groups, respectively. TPM/RV volumes were higher in the volume α pressure load group (control: 0.07 g/mL, volume: 0.14 g/mL, volume α pressure: 0.17 g/mL), and correlated with QRS duration (R α 0.77). In 3 patients in the volume α pressure, RV volume included TPM was indicated for reoperation, but when RV volume was reduced by TPM removal, reoperation was no indicated. RV volume measurements, including TPM in volume α pressure load, may help determine appropriate volume recommendations for reoperation.

Trans${^2}$-CBCT: A Dual-Transformer Framework for Sparse-View CBCT Reconstruction

Minmin Yang, Huantao Ren, Senem Velipasalar

arxiv logopreprintJun 20 2025
Cone-beam computed tomography (CBCT) using only a few X-ray projection views enables faster scans with lower radiation dose, but the resulting severe under-sampling causes strong artifacts and poor spatial coverage. We address these challenges in a unified framework. First, we replace conventional UNet/ResNet encoders with TransUNet, a hybrid CNN-Transformer model. Convolutional layers capture local details, while self-attention layers enhance global context. We adapt TransUNet to CBCT by combining multi-scale features, querying view-specific features per 3D point, and adding a lightweight attenuation-prediction head. This yields Trans-CBCT, which surpasses prior baselines by 1.17 dB PSNR and 0.0163 SSIM on the LUNA16 dataset with six views. Second, we introduce a neighbor-aware Point Transformer to enforce volumetric coherence. This module uses 3D positional encoding and attention over k-nearest neighbors to improve spatial consistency. The resulting model, Trans$^2$-CBCT, provides an additional gain of 0.63 dB PSNR and 0.0117 SSIM. Experiments on LUNA16 and ToothFairy show consistent gains from six to ten views, validating the effectiveness of combining CNN-Transformer features with point-based geometry reasoning for sparse-view CBCT reconstruction.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

DSA-NRP: No-Reflow Prediction from Angiographic Perfusion Dynamics in Stroke EVT

Shreeram Athreya, Carlos Olivares, Ameera Ismail, Kambiz Nael, William Speier, Corey Arnold

arxiv logopreprintJun 20 2025
Following successful large-vessel recanalization via endovascular thrombectomy (EVT) for acute ischemic stroke (AIS), some patients experience a complication known as no-reflow, defined by persistent microvascular hypoperfusion that undermines tissue recovery and worsens clinical outcomes. Although prompt identification is crucial, standard clinical practice relies on perfusion magnetic resonance imaging (MRI) within 24 hours post-procedure, delaying intervention. In this work, we introduce the first-ever machine learning (ML) framework to predict no-reflow immediately after EVT by leveraging previously unexplored intra-procedural digital subtraction angiography (DSA) sequences and clinical variables. Our retrospective analysis included AIS patients treated at UCLA Medical Center (2011-2024) who achieved favorable mTICI scores (2b-3) and underwent pre- and post-procedure MRI. No-reflow was defined as persistent hypoperfusion (Tmax > 6 s) on post-procedural imaging. From DSA sequences (AP and lateral views), we extracted statistical and temporal perfusion features from the target downstream territory to train ML classifiers for predicting no-reflow. Our novel method significantly outperformed a clinical-features baseline(AUC: 0.7703 $\pm$ 0.12 vs. 0.5728 $\pm$ 0.12; accuracy: 0.8125 $\pm$ 0.10 vs. 0.6331 $\pm$ 0.09), demonstrating that real-time DSA perfusion dynamics encode critical insights into microvascular integrity. This approach establishes a foundation for immediate, accurate no-reflow prediction, enabling clinicians to proactively manage high-risk patients without reliance on delayed imaging.

Segmentation of clinical imagery for improved epidural stimulation to address spinal cord injury

Matelsky, J. K., Sharma, P., Johnson, E. C., Wang, S., Boakye, M., Angeli, C., Forrest, G. F., Harkema, S. J., Tenore, F.

medrxiv logopreprintJun 20 2025
Spinal cord injury (SCI) can severely impair motor and autonomic function, with long-term consequences for quality of life. Epidural stimulation has emerged as a promising intervention, offering partial recovery by activating neural circuits below the injury. To make this therapy effective in practice, precise placement of stimulation electrodes is essential -- and that requires accurate segmentation of spinal cord structures in MRI data. We present a protocol for manual segmentation tailored to SCI anatomy, and evaluated a deep learning approach using a U-Net architecture to automate this segmentation process. Our approach yields accurate, efficient segmentation that identify potential electrode placement sites with high fidelity. Preliminary results suggest that this framework can accelerate SCI MRI analysis and improve planning for epidural stimulation, helping bridge the gap between advanced neurotechnologies and real-world clinical application with faster surgeries and more accurate electrode placement.

Evaluating ChatGPT's performance across radiology subspecialties: A meta-analysis of board-style examination accuracy and variability.

Nguyen D, Kim GHJ, Bedayat A

pubmed logopapersJun 20 2025
Large language models (LLMs) like ChatGPT are increasingly used in medicine due to their ability to synthesize information and support clinical decision-making. While prior research has evaluated ChatGPT's performance on medical board exams, limited data exist on radiology-specific exams especially considering prompt strategies and input modalities. This meta-analysis reviews ChatGPT's performance on radiology board-style questions, assessing accuracy across radiology subspecialties, prompt engineering methods, GPT model versions, and input modalities. Searches in PubMed and SCOPUS identified 163 articles, of which 16 met inclusion criteria after excluding irrelevant topics and non-board exam evaluations. Data extracted included subspecialty topics, accuracy, question count, GPT model, input modality, prompting strategies, and access dates. Statistical analyses included two-proportion z-tests, a binomial generalized linear model (GLM), and meta-regression with random effects (Stata v18.0, R v4.3.1). Across 7024 questions, overall accuracy was 58.83 % (95 % CI, 55.53-62.13). Performance varied widely by subspecialty, highest in emergency radiology (73.00 %) and lowest in musculoskeletal radiology (49.24 %). GPT-4 and GPT-4o significantly outperformed GPT-3.5 (p < .001), but visual inputs yielded lower accuracy (46.52 %) compared to textual inputs (67.10 %, p < .001). Prompting strategies showed significant improvement (p < .01) with basic prompts (66.23 %) compared to no prompts (59.70 %). A modest but significant decline in performance over time was also observed (p < .001). ChatGPT demonstrates promising but inconsistent performance in radiology board-style questions. Limitations in visual reasoning, heterogeneity across studies, and prompt engineering variability highlight areas requiring targeted optimization.

DSA-NRP: No-Reflow Prediction from Angiographic Perfusion Dynamics in Stroke EVT

Shreeram Athreya, Carlos Olivares, Ameera Ismail, Kambiz Nael, William Speier, Corey Arnold

arxiv logopreprintJun 20 2025
Following successful large-vessel recanalization via endovascular thrombectomy (EVT) for acute ischemic stroke (AIS), some patients experience a complication known as no-reflow, defined by persistent microvascular hypoperfusion that undermines tissue recovery and worsens clinical outcomes. Although prompt identification is crucial, standard clinical practice relies on perfusion magnetic resonance imaging (MRI) within 24 hours post-procedure, delaying intervention. In this work, we introduce the first-ever machine learning (ML) framework to predict no-reflow immediately after EVT by leveraging previously unexplored intra-procedural digital subtraction angiography (DSA) sequences and clinical variables. Our retrospective analysis included AIS patients treated at UCLA Medical Center (2011-2024) who achieved favorable mTICI scores (2b-3) and underwent pre- and post-procedure MRI. No-reflow was defined as persistent hypoperfusion (Tmax > 6 s) on post-procedural imaging. From DSA sequences (AP and lateral views), we extracted statistical and temporal perfusion features from the target downstream territory to train ML classifiers for predicting no-reflow. Our novel method significantly outperformed a clinical-features baseline(AUC: 0.7703 $\pm$ 0.12 vs. 0.5728 $\pm$ 0.12; accuracy: 0.8125 $\pm$ 0.10 vs. 0.6331 $\pm$ 0.09), demonstrating that real-time DSA perfusion dynamics encode critical insights into microvascular integrity. This approach establishes a foundation for immediate, accurate no-reflow prediction, enabling clinicians to proactively manage high-risk patients without reliance on delayed imaging.
Page 91 of 2412401 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.