Sort by:
Page 9 of 73727 results

The dosimetric impacts of ct-based deep learning autocontouring algorithm for prostate cancer radiotherapy planning dosimetric accuracy of DirectORGANS.

Dinç SÇ, Üçgül AN, Bora H, Şentürk E

pubmed logopapersAug 2 2025
In study, we aimed to dosimetrically evaluate the usability of a new generation autocontouring algorithm (DirectORGANS) that automatically identifies organs and contours them directly in the computed tomography (CT) simulator before creating prostate radiotherapy plans. The CT images of 10 patients were used in this study. The prostates, bladder, rectum, and femoral heads of 10 patients were automatically contoured based on DirectORGANS algorithm at the CT simulator. On the same CT image sets, the same target volumes and contours of organs at risk were manually contoured by an experienced physician using MRI images and used as a reference structure. The doses of manually delineated contours of the target volume and organs at risk and the doses of auto contours of the target volume and organs at risk were obtained from the dose volume histogram of the same plan. Conformity index (CI) and homogeneity index (HI) were calculated to evaluate the target volumes. In critical organ structures, V<sub>60,</sub> V<sub>65,</sub> V<sub>70</sub> for the rectum, V<sub>65,</sub> V70, V75, and V<sub>80</sub> for the bladder, and maximum doses for femoral heads were evaluated. The Mann-Whitney U test was used for statistical comparison with statistical package SPSS (P < 0.05). Compared to the doses of the manual contours (MC) with auto contours (AC), there was no significant difference between the doses of the organs at risk. However, there were statistically significant differences between HI and CI values due to differences in prostate contouring (P < 0.05). The study showed that the need for clinicians to edit target volumes using MRI before treatment planning. However, it demonstrated that delineating organs at risk was used safely without the need for correction. DirectORGANS algorithm is suitable for use in RT planning to minimize differences between physicians and shorten the duration of this contouring step.

Optimization strategy for fat-suppressed T2-weighted images in liver imaging: The combined application of AI-assisted compressed sensing and respiratory triggering.

Feng M, Li S, Song X, Mao W, Liu Y, Yuan Z

pubmed logopapersAug 1 2025
This study aimed to optimize the imaging time and image quality of T2WI-FS through the integration of Artificial Intelligence-Assisted Compressed Sensing (ACS) and respiratory triggering (RT). A prospective cohort study was conducted on one hundred thirty-four patients (99 males, 35 females; average age: 57.93 ± 9.40 years) undergoing liver MRI between March and July 2024. All patients were scanned using both breath-hold ACS-assisted T2WI (BH-ACS-T2WI) and respiratory-triggered ACS-assisted T2WI (RT-ACS-T2WI) sequences. Two experienced radiologists retrospectively analyzed regions of interest (ROIs), recorded primary lesions, and assessed key metrics including signal intensity (SI), standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), motion artifacts, hepatic vessel clarity, liver edge sharpness, lesion conspicuity, and overall image quality. Statistical comparisons were conducted using Mann-Whitney U test, Wilcoxon signed-rank test and intraclass correlation coefficient (ICC). Compared to BH-ACS-T2WI, RT-ACS-T2WI significantly reduced average imaging time from 38 s to 22.91 ± 3.36 s, achieving a 40 % reduction in scan duration. Additionally, RT-ACS-T2WI demonstrated superior performance across multiple parameters, including SI, SD, SNR, CNR, motion artifact reduction, hepatic vessel clarity, liver edge sharpness, lesion conspicuity (≤5 mm), and overall image quality (P < 0.05). Notably, the lesion detection rate was slightly higher with RT-ACS-T2WI (94 %) compared to BH-ACS-T2WI (90 %). The RT-ACS-T2WI sequence not only enhanced image quality but also reduced imaging time to approximately 23 s, making it particularly beneficial for patients unable to perform prolonged breath-holding maneuvers. This approach represents a promising advancement in optimizing liver MRI protocols.

FOCUS-DWI improves prostate cancer detection through deep learning reconstruction with IQMR technology.

Zhao Y, Xie XL, Zhu X, Huang WN, Zhou CW, Ren KX, Zhai RY, Wang W, Wang JW

pubmed logopapersAug 1 2025
This study explored the effects of using Intelligent Quick Magnetic Resonance (IQMR) image post-processing on image quality in Field of View Optimized and Constrained Single-Shot Diffusion-Weighted Imaging (FOCUS-DWI) sequences for prostate cancer detection, and assessed its efficacy in distinguishing malignant from benign lesions. The clinical data and MRI images from 62 patients with prostate masses (31 benign and 31 malignant) were retrospectively analyzed. Axial T2-weighted imaging with fat saturation (T2WI-FS) and FOCUS-DWI sequences were acquired, and the FOCUS-DWI images were processed using the IQMR post-processing system to generate IQMR-FOCUS-DWI images. Two independent radiologists undertook subjective scoring, grading using the Prostate Imaging Reporting and Data System (PI-RADS), diagnosis of benign and malignant lesions, and diagnostic confidence scoring for images from the FOCUS-DWI and IQMR-FOCUS-DWI sequences. Additionally, quantitative analyses, specifically, the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), were conducted using T2WI-FS as the reference standard. The apparent diffusion coefficients (ADCs) of malignant and benign lesions were compared between the two imaging sequences. Spearman correlation coefficients were calculated to evaluate the associations between diagnostic confidence scores and diagnostic accuracy rates of the two sequence groups, as well as between the ADC values of malignant lesions and Gleason grading in the two sequence groups. Receiver operating characteristic (ROC) curves were utilized to assess the efficacy of ADC in distinguishing lesions. The qualitative analysis revealed that IQMR-FOCUS-DWI images showed significantly better noise suppression, reduced geometric distortion, and enhanced overall quality relative to the FOCUS-DWI images (P < 0.001). There was no significant difference in the PI-RADS scores between IQMR-FOCUS-DWI and FOCUS-DWI images (P = 0.0875), while the diagnostic confidence scores of IQMR-FOCUS-DWI sequences were markedly higher than those of FOCUS-DWI sequences (P = 0.0002). The diagnostic results of the FOCUS-DWI sequences for benign and malignant prostate lesions were consistent with those of the pathological results (P < 0.05), as were those of the IQMR-FOCUS-DWI sequences (P < 0.05). The quantitative analysis indicated that the PSNR, SSIM, and ADC values were markedly greater in IQMR-FOCUS-DWI images relative to FOCUS-DWI images (P < 0.01). In both imaging sequences, benign lesions exhibited ADC values markedly greater than those of malignant lesions (P < 0.001). The diagnostic confidence scores of both groups of sequences were significantly positively correlated with the diagnostic accuracy rate. In malignant lesions, the ADC values of the FOCUS-DWI sequences showed moderate negative correlations with the Gleason grading, while the ADC values of the IQMR-FOCUS-DWI sequences were strongly negatively associated with the Gleason grading. ROC curves indicated the superior diagnostic performance of IQMR-FOCUS-DWI (AUC = 0.941) compared to FOCUS-DWI (AUC = 0.832) for differentiating prostate lesions (P = 0.0487). IQMR-FOCUS-DWI significantly enhances image quality and improves diagnostic accuracy for benign and malignant prostate lesions compared to conventional FOCUS-DWI.

Multimodal multiphasic preoperative image-based deep-learning predicts HCC outcomes after curative surgery.

Hui RW, Chiu KW, Lee IC, Wang C, Cheng HM, Lu J, Mao X, Yu S, Lam LK, Mak LY, Cheung TT, Chia NH, Cheung CC, Kan WK, Wong TC, Chan AC, Huang YH, Yuen MF, Yu PL, Seto WK

pubmed logopapersAug 1 2025
HCC recurrence frequently occurs after curative surgery. Histological microvascular invasion (MVI) predicts recurrence but cannot provide preoperative prognostication, whereas clinical prediction scores have variable performances. Recurr-NET, a multimodal multiphasic residual-network random survival forest deep-learning model incorporating preoperative CT and clinical parameters, was developed to predict HCC recurrence. Preoperative triphasic CT scans were retrieved from patients with resected histology-confirmed HCC from 4 centers in Hong Kong (internal cohort). The internal cohort was randomly divided in an 8:2 ratio into training and internal validation. External testing was performed in an independent cohort from Taiwan.Among 1231 patients (age 62.4y, 83.1% male, 86.8% viral hepatitis, and median follow-up 65.1mo), cumulative HCC recurrence rates at years 2 and 5 were 41.8% and 56.4%, respectively. Recurr-NET achieved excellent accuracy in predicting recurrence from years 1 to 5 (internal cohort AUROC 0.770-0.857; external AUROC 0.758-0.798), significantly outperforming MVI (internal AUROC 0.518-0.590; external AUROC 0.557-0.615) and multiple clinical risk scores (ERASL-PRE, ERASL-POST, DFT, and Shim scores) (internal AUROC 0.523-0.587, external AUROC: 0.524-0.620), respectively (all p < 0.001). Recurr-NET was superior to MVI in stratifying recurrence risks at year 2 (internal: 72.5% vs. 50.0% in MVI; external: 65.3% vs. 46.6% in MVI) and year 5 (internal: 86.4% vs. 62.5% in MVI; external: 81.4% vs. 63.8% in MVI) (all p < 0.001). Recurr-NET was also superior to MVI in stratifying liver-related and all-cause mortality (all p < 0.001). The performance of Recurr-NET remained robust in subgroup analyses. Recurr-NET accurately predicted HCC recurrence, outperforming MVI and clinical prediction scores, highlighting its potential in preoperative prognostication.

Natural language processing and LLMs in liver imaging: a practical review of clinical applications.

López-Úbeda P, Martín-Noguerol T, Luna A

pubmed logopapersAug 1 2025
Liver diseases pose a significant global health challenge due to their silent progression and high mortality. Proper interpretation of radiology reports is essential for the evaluation and management of these conditions but is limited by variability in reporting styles and the complexity of unstructured medical language. In this context, Natural Language Processing (NLP) techniques and Large Language Models (LLMs) have emerged as promising tools to extract relevant clinical information from unstructured liver radiology reports. This work reviews, from a practical point of view, the current state of NLP and LLM applications for liver disease classification, clinical feature extraction, diagnostic support, and staging from reports. It also discusses existing limitations, such as the need for high-quality annotated data, lack of explainability, and challenges in clinical integration. With responsible and validated implementation, these technologies have the potential to transform liver clinical management by enabling faster and more accurate diagnoses and optimizing radiology workflows, ultimately improving patient care in liver diseases.

Reference charts for first-trimester placental volume derived using OxNNet.

Mathewlynn S, Starck LN, Yin Y, Soltaninejad M, Swinburne M, Nicolaides KH, Syngelaki A, Contreras AG, Bigiotti S, Woess EM, Gerry S, Collins S

pubmed logopapersAug 1 2025
To establish a comprehensive reference range for OxNNet-derived first-trimester placental volume (FTPV), based on values observed in healthy pregnancies. Data were obtained from the First Trimester Placental Ultrasound Study, an observational cohort study in which three-dimensional placental ultrasound imaging was performed between 11 + 2 and 14 + 1 weeks' gestation, alongside otherwise routine care. A subgroup of singleton pregnancies resulting in term live birth, without neonatal unit admission or major chromosomal or structural abnormality, were included. Exclusion criteria were fetal growth restriction, maternal diabetes mellitus, hypertensive disorders of pregnancy or other maternal medical conditions (e.g. chronic hypertension, antiphospholipid syndrome, systemic lupus erythematosus). Placental images were processed using the OxNNet toolkit, a software solution based on a fully convolutional neural network, for automated placental segmentation and volume calculation. Quantile regression and the lambda-mu-sigma (LMS) method were applied to model the distribution of FTPV, using both crown-rump length (CRL) and gestational age as predictors. Model fit was assessed using the Akaike information criterion (AIC), and centile curves were constructed for visual inspection. The cohort comprised 2547 cases. The distribution of FTPV across gestational ages was positively skewed, with variation in the distribution at different gestational timepoints. In model comparisons, the LMS method yielded lower AIC values compared with quantile regression models. For predicting FTPV from CRL, the LMS model with the Sinh-Arcsinh distribution achieved the best performance, with the lowest AIC value. For gestational-age-based prediction, the LMS model with the Box-Cox Cole and Green original distribution achieved the lowest AIC value. The LMS models were selected to construct centile charts for FTPV based on both CRL and gestational age. Evaluation of the centile charts revealed strong agreement between predicted and observed centiles, with minimal deviations. Both models demonstrated excellent calibration, and the Z-scores derived using each of the models confirmed normal distribution. This study established reference ranges for FTPV based on both CRL and gestational age in healthy pregnancies. The LMS method provided the best model fit, demonstrating excellent calibration and minimal deviations between predicted and observed centiles. These findings should facilitate the exploration of FTPV as a potential biomarker for adverse pregnancy outcome and provide a foundation for future research into its clinical applications. © 2025 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

Lumbar and pelvic CT image segmentation based on cross-scale feature fusion and linear self-attention mechanism.

Li C, Chen L, Liu Q, Teng J

pubmed logopapersAug 1 2025
The lumbar spine and pelvis are critical stress-bearing structures of the human body, and their rapid and accurate segmentation plays a vital role in clinical diagnosis and intervention. However, conventional CT imaging poses significant challenges due to the low contrast of sacral and bilateral hip tissues and the complex and highly similar intervertebral space structures within the lumbar spine. To address these challenges, we propose a general-purpose segmentation network that integrates a cross-scale feature fusion strategy with a linear self-attention mechanism. The proposed network effectively extracts multi-scale features and fuses them along the channel dimension, enabling both structural and boundary information of lumbar and pelvic regions to be captured within the encoder-decoder architecture.Furthermore, we introduce a linear mapping strategy to approximate the traditional attention matrix with a low-rank representation, allowing the linear attention mechanism to significantly reduce computational complexity while maintaining segmentation accuracy for vertebrae and pelvic bones. Comparative and ablation experiments conducted on the CTSpine1K and CTPelvic1K datasets demonstrate that our method achieves improvements of 1.5% in Dice Similarity Coefficient (DSC) and 2.6% in Hausdorff Distance (HD) over state-of-the-art models, validating the effectiveness of our approach in enhancing boundary segmentation quality and segmentation accuracy in homogeneous anatomical regions.

Generative artificial intelligence for counseling of fetal malformations following ultrasound diagnosis.

Grünebaum A, Chervenak FA

pubmed logopapersJul 31 2025
To explore the potential role of generative artificial intelligence (GenAI) in enhancing patient counseling following prenatal ultrasound diagnosis of fetal malformations, with an emphasis on clinical utility, patient comprehension, and ethical implementation. The detection of fetal anomalies during the mid-trimester ultrasound is emotionally distressing for patients and presents significant challenges in communication and decision-making. Generative AI tools, such as GPT-4 and similar models, offer novel opportunities to support clinicians in delivering accurate, empathetic, and accessible counseling while preserving the physician's central role. We present a narrative review and applied framework illustrating how GenAI can assist obstetricians before, during, and after the fetal anomaly scan. Use cases include lay summaries, visual aids, anticipatory guidance, multilingual translation, and emotional support. Tables and sample prompts demonstrate practical applications across a range of anomalies.

Effectiveness of Radiomics-Based Machine Learning Models in Differentiating Pancreatitis and Pancreatic Ductal Adenocarcinoma: Systematic Review and Meta-Analysis.

Zhang L, Li D, Su T, Xiao T, Zhao S

pubmed logopapersJul 31 2025
Pancreatic ductal adenocarcinoma (PDAC) and mass-forming pancreatitis (MFP) share similar clinical, laboratory, and imaging features, making accurate diagnosis challenging. Nevertheless, PDAC is highly malignant with a poor prognosis, whereas MFP is an inflammatory condition typically responding well to medical or interventional therapies. Some investigators have explored radiomics-based machine learning (ML) models for distinguishing PDAC from MFP. However, systematic evidence supporting the feasibility of these models is insufficient, presenting a notable challenge for clinical application. This study intended to review the diagnostic performance of radiomics-based ML models in differentiating PDAC from MFP, summarize the methodological quality of the included studies, and provide evidence-based guidance for optimizing radiomics-based ML models and advancing their clinical use. PubMed, Embase, Cochrane, and Web of Science were searched for relevant studies up to June 29, 2024. Eligible studies comprised English cohort, case-control, or cross-sectional designs that applied fully developed radiomics-based ML models-including traditional and deep radiomics-to differentiate PDAC from MFP, while also reporting their diagnostic performance. Studies without full text, limited to image segmentation, or insufficient outcome metrics were excluded. Methodological quality was appraised by means of the radiomics quality score. Since the limited applicability of QUADAS-2 in radiomics-based ML studies, the risk of bias was not formally assessed. Pooled sensitivity, specificity, area under the curve of summary receiver operating characteristics (SROC), likelihood ratios, and diagnostic odds ratio were estimated through a bivariate mixed-effects model. Results were presented with forest plots, SROC curves, and Fagan's nomogram. Subgroup analysis was performed to appraise the diagnostic performance of radiomics-based ML models across various imaging modalities, including computed tomography (CT), magnetic resonance imaging, positron emission tomography-CT, and endoscopic ultrasound. This meta-analysis included 24 studies with 14,406 cases, including 7635 PDAC cases. All studies adopted a case-control design, with 5 conducted across multiple centers. Most studies used CT as the primary imaging modality. The radiomics quality score scores ranged from 5 points (14%) to 17 points (47%), with an average score of 9 (25%). The radiomics-based ML models demonstrated high diagnostic performance. Based on the independent validation sets, the pooled sensitivity, specificity, area under the curve of SROC, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.92 (95% CI 0.91-0.94), 0.90 (95% CI 0.85-0.94), 0.94 (95% CI 0.74-0.99), 9.3 (95% CI 6.0-14.2), 0.08 (95% CI 0.07-0.11), and 110 (95% CI 62-194), respectively. Radiomics-based ML models demonstrate high diagnostic accuracy in differentiating PDAC from MFP, underscoring their potential as noninvasive tools for clinical decision-making. Nonetheless, the overall methodological quality was moderate due to limitations in external validation, standardized protocols, and reproducibility. These findings support the promise of radiomics in clinical diagnostics while highlighting the need for more rigorous, multicenter research to enhance model generalizability and clinical applicability.

An interpretable CT-based machine learning model for predicting recurrence risk in stage II colorectal cancer.

Wu Z, Gong L, Luo J, Chen X, Yang F, Wen J, Hao Y, Wang Z, Gu R, Zhang Y, Liao H, Wen G

pubmed logopapersJul 31 2025
This study aimed to develop an interpretable 3-year disease-free survival risk prediction tool to stratify patients with stage II colorectal cancer (CRC) by integrating CT images and clinicopathological factors. A total of 769 patients with pathologically confirmed stage II CRC and disease-free survival (DFS) follow-up information were recruited from three medical centers and divided into training (n = 442), test (n = 190), and validation cohorts (n = 137). CT-based tumor radiomics features were extracted, selected, and used to calculate a Radscore. A combined model was developed using artificial neural network (ANN) algorithm, by integrating the Radscore with significant clinicoradiological factors to classify patients into high- and low-risk groups. Model performance was assessed using the area under the curve (AUC), and feature contributions were qualified using the Shapley additive explanation (SHAP) algorithm. Kaplan-Meier survival analysis revealed the prognostic stratification value of the risk groups. Fourteen radiomics features and five clinicoradiological factors were selected to construct the radiomics and clinicoradiological models, respectively. The combined model demonstrated optimal performance, with AUCs of 0.811 and 0.846 in the test and validation cohorts, respectively. Kaplan-Meier curves confirmed effective patient stratification (p < 0.001) in both test and validation cohorts. A high Radscore, rough intestinal outer edge, and advanced age were identified as key prognostic risk factors using the SHAP. The combined model effectively stratified patients with stage II CRC into different prognostic risk groups, aiding clinical decision-making. Integrating CT images with clinicopathological information can facilitate the identification of patients with stage II CRC who are most likely to benefit from adjuvant chemotherapy. The effectiveness of adjuvant chemotherapy for stage II colorectal cancer remains debated. A combined model successfully identified high-risk stage II colorectal cancer patients. Shapley additive explanations enhance the interpretability of the model's predictions.
Page 9 of 73727 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.