Back to all papers

Comparison of Prostate-Specific Membrane Antigen Positron Emission Tomography and Conventional Imaging Modalities in the Detection of Biochemical Recurrence of Prostate Cancer and Assessment of the Role of Artificial Intelligence: A Systematic Review and Meta-analysis.

September 20, 2025pubmed logopapers

Authors

Zhang H,Xie C,Huang C,Jiang Z,Tang Q

Affiliations (3)

  • Guangzhou Huashang Vocational College, Guangzhou 511300, China (H.Z., C.X., C.H.).
  • Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China (Z.J., Q.T.).
  • Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China (Z.J., Q.T.). Electronic address: [email protected].

Abstract

We conducted a systematic review and meta-analysis to assess and compare the diagnostic performance of prostate-specific membrane antigen positron-emission tomography (PSMA PET) with conventional imaging modalities in detecting biochemical recurrence of prostate cancer, and to assess the role of artificial intelligence in this context. A comprehensive search of PubMed, Embase, Web of Science, the Cochrane Library, and Scopus was conducted for studies, initially on May 7, 2025, and updated on July 28, 2025. Studies that compared PSMA PET with conventional imaging and assessed artificial intelligence for detecting biochemical recurrence of prostate cancer were considered. The QUADAS-2 technique was employed to evaluate study quality. Diagnosis accuracy and detection rates were aggregated utilizing a bivariate random-effects model. A total of 7637 patients from 67 studies were included. PSMA PET demonstrated significantly higher overall diagnostic accuracy for biochemical recurrence of prostate cancer compared to mpMRI, CT, and AI test sets, with accuracy values of (0.89 vs. 0.71, 0.45, and 0.76, P<0.01). For local recurrence, mpMRI outperformed PSMA PET and CT (0.93 vs. 0.84 and 0.77, P<0.01). PSMA PET was superior in detecting lymph node metastasis than mpMRI and CT (0.89 vs. 0.79 and 0.72, P<0.05). For bone metastasis, PSMA PET outperformed mpMRI, CT, and Bone scan (0.95 vs. 0.85, 0.81, and 0.80, P<0.05). For visceral metastasis, PSMA PET outperformed mpMRI (0.96 vs. 0.89, P=0.23), and CT (0.96 vs. 0.78, P<0.05). 21 studies involving 3113 samples were included to evaluate the performance of artificial intelligence in detecting biochemical recurrence of prostate cancer. The pooled sensitivity, specificity, DOR, and AUC of AI test sets in detecting biochemical recurrence of prostate cancer were 0.77, 0.76, 10.39, and 0.79. Heterogeneity limits the generalizability of our findings. PSMA PET outperformed mpMRI and CT in detecting overall, local recurrence, bone, and visceral metastasis, while mpMRI was more effective for local recurrence. While AI exhibits potential diagnostic efficacy. Despite promising results, heterogeneity and limited validation highlight the need for further research to support routine clinical use.

Topics

Journal ArticleReview

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.