Back to all papers

Intratumoral and peritumoral heterogeneity based on CT to predict the pathological response after neoadjuvant chemoimmunotherapy in esophageal squamous cell carcinoma.

Authors

Ling X,Yang X,Wang P,Li Y,Wen Z,Wang J,Chen K,Yu Y,Liu A,Ma J,Meng W

Affiliations (4)

  • Department of Thoracic Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
  • Department of Radiology, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
  • Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
  • Magnetic Resonance Imaging Department, The Second People's Hospital, Yangming District, Mudanjiang City, Heilongjiang Province, China.

Abstract

Neoadjuvant chemoimmunotherapy (NACI) regimen (camrelizumab plus paclitaxel and nedaplatin) has shown promising potential in patients with esophageal squamous cell carcinoma (ESCC), but accurately predicting the therapeutic response remains a challenge. To develop and validate a CT-based machine learning model that incorporates both intratumoral and peritumoral heterogeneity for predicting the pathological response of ESCC patients after NACI. Patients with ESCC who underwent surgery following NACI between June 2020 and July 2024 were included retrospectively and prospectively. Univariate and multivariate logistic regression analyses were performed to identify clinical variables associated with pathological response. Traditional radiomics features and habitat radiomics features from the intratumoral and peritumoral regions were extracted from post-treatment CT images, and six predictive models were established using 14 machine learning algorithms. The combined model was developed by integrating intratumoral and peritumoral habitat radiomics features with clinical variables. The performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC). A total of 157 patients (mean [SD] age, 59.6 [6.5] years) were enrolled in our study, of whom 60 (38.2%) achieved major pathological response (MPR) and 40 (25.5%) achieved pathological complete response (pCR). The combined model demonstrated excellent predictive ability for MPR after NACI, with an AUC of 0.915 (95% CI, 0.844-0.981), accuracy of 0.872, sensitivity of 0.733, and specificity of 0.938 in the test set. In sensitivity analysis focusing on pCR, the combined model exhibited robust performance, with an AUC of 0.895 (95% CI, 0.782-0.980) in the test set. The combined model integrating intratumoral and peritumoral habitat radiomics features with clinical variables can accurately predict MPR in ESCC patients after NACI and shows promising potential in predicting pCR.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.