Back to all papers

MRI-based habitat analysis for pathologic response prediction after neoadjuvant chemoradiotherapy in rectal cancer: a multicenter study.

Authors

Chen Q,Zhang Q,Li Z,Zhang S,Xia Y,Wang H,Lu Y,Zheng A,Shao C,Shen F

Affiliations (7)

  • Department of Radiology, Changhai Hospital, Shanghai, China.
  • Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  • Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, China.
  • Shanghai United Imaging Intelligence, Shanghai, China.
  • Department of Colorectal Surgery, Changhai Hospital, Shanghai, China.
  • Shanghai Jiaotong University School of Medicine, Shanghai, China.
  • Department of Radiology, Changhai Hospital, Shanghai, China. [email protected].

Abstract

To investigate MRI-based habitat analysis for its value in predicting pathologic response following neoadjuvant chemoradiotherapy (nCRT) in rectal cancer (RC) patients. 1021 RC patients in three hospitals were divided into the training and test sets (n = 319), the internal validation set (n = 317), and external validation sets 1 (n = 158) and 2 (n = 227). Deep learning was performed to automatically segment the entire lesion on high-resolution MRI. Simple linear iterative clustering was used to divide each tumor into subregions, from which radiomics features were extracted. The optimal number of clusters reflecting the diversity of the tumor ecosystem was determined. Finally, four models were developed: clinical, intratumoral heterogeneity (ITH)-based, radiomics, and fusion models. The performance of these models was evaluated. The impact of nCRT on disease-free survival (DFS) was further analyzed. The Delong test revealed the fusion model (AUCs of 0.867, 0.851, 0.852, and 0.818 in the four cohorts, respectively), the radiomics model (0.831, 0.694, 0.753, and 0.705, respectively), and the ITH model (0.790, 0.786, 0.759, and 0.722, respectively) were all superior to the clinical model (0.790, 0.605, 0.735, and 0.704, respectively). However, no significant differences were detected between the fusion and ITH models. Patients stratified using the fusion model showed significant differences in DFS between the good and poor response groups (all p < 0.05 in the four sets). The fusion model combining clinical factors, radiomics features, and ITH features may help predict pathologic response in RC cases receiving nCRT. Question Identifying rectal cancer (RC) patients likely to benefit from neoadjuvant chemoradiotherapy (nCRT) before treatment is crucial. Findings The fusion model shows the best performance in predicting response after neoadjuvant chemoradiotherapy. Clinical relevance The fusion model integrates clinical characteristics, radiomics features, and intratumoral heterogeneity (ITH)features, which can be applied for the prediction of response to nCRT in RC patients, offering potential benefits in terms of personalized treatment strategies.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.