Sort by:
Page 84 of 1421420 results

Non-invasive identification of TKI-resistant NSCLC: a multi-model AI approach for predicting EGFR/TP53 co-mutations.

Li J, Xu R, Wang D, Liang Z, Li Y, Wang Q, Bi L, Qi Y, Zhou Y, Li W

pubmed logopapersJul 10 2025
To investigate the value of multi-model based on preoperative CT scans in predicting EGFR/TP53 co-mutation status. We retrospectively included 2171 patients with non-small cell lung cancer (NSCLC) with pre-treatment computed tomography (CT) scans and predicting epidermal growth factor receptor (EGFR) gene sequencing from West China Hospital between January 2013 and April 2024. The deep-learning model was built for predicting EGFR / tumor protein 53 (TP53) co-occurrence status. The model performance was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further compared multi-dimension model with three one-dimension models separately, and we explored the value of combining clinical factors with machine-learning factors. Additionally, we investigated 546 patients with 56-panel next-generation sequencing and low-dose computed tomography (LDCT) to explore the biological mechanisms of radiomics. In our cohort of 2171 patients (1,153 males, 1,018 females; median age 60 years), single-dimensional models were developed using data from 1,055 eligible patients. The multi-dimensional model utilizing a Random Forest classifier achieved superior performance, yielding the highest AUC of 0.843 for predicting EGFR/TP53 co-mutations in the test set. The multi-dimensional model demonstrates promising potential for non-invasive prediction of EGFR and TP53 co-mutations, facilitating early and informed clinical decision-making in NSCLC patients at risk of treatment resistance.

Automated Detection of Lacunes in Brain MR Images Using SAM with Robust Prompts via Self-Distillation and Anatomy-Informed Priors

Deepika, P., Shanker, G., Narayanan, R., Sundaresan, V.

medrxiv logopreprintJul 10 2025
Lacunes, which are small fluid-filled cavities in the brain, are signs of cerebral small vessel disease and have been clinically associated with various neurodegenerative and cerebrovascular diseases. Hence, accurate detection of lacunes is crucial and is one of the initial steps for the precise diagnosis of these diseases. However, developing a robust and consistently reliable method for detecting lacunes is challenging because of the heterogeneity in their appearance, contrast, shape, and size. To address the above challenges, in this study, we propose a lacune detection method using the Segment Anything Model (SAM), guided by point prompts from a candidate prompt generator. The prompt generator initially detects potential lacunes with a high sensitivity using a composite loss function. The SAM model selects true lacunes by delineating their characteristics from mimics such as the sulcus and enlarged perivascular spaces, imitating the clinicians strategy of examining the potential lacunes along all three axes. False positives were further reduced by adaptive thresholds based on the region-wise prevalence of lacunes. We evaluated our method on two diverse, multi-centric MRI datasets, VALDO and ISLES, comprising only FLAIR sequences. Despite diverse imaging conditions and significant variations in slice thickness (0.5-6 mm), our method achieved sensitivities of 84% and 92%, with average false positive rates of 0.05 and 0.06 per slice in ISLES and VALDO datasets respectively. The proposed method outperformed the state-of-the-art methods, demonstrating its effectiveness in lacune detection and quantification.

HNOSeg-XS: Extremely Small Hartley Neural Operator for Efficient and Resolution-Robust 3D Image Segmentation

Ken C. L. Wong, Hongzhi Wang, Tanveer Syeda-Mahmood

arxiv logopreprintJul 10 2025
In medical image segmentation, convolutional neural networks (CNNs) and transformers are dominant. For CNNs, given the local receptive fields of convolutional layers, long-range spatial correlations are captured through consecutive convolutions and pooling. However, as the computational cost and memory footprint can be prohibitively large, 3D models can only afford fewer layers than 2D models with reduced receptive fields and abstract levels. For transformers, although long-range correlations can be captured by multi-head attention, its quadratic complexity with respect to input size is computationally demanding. Therefore, either model may require input size reduction to allow more filters and layers for better segmentation. Nevertheless, given their discrete nature, models trained with patch-wise training or image downsampling may produce suboptimal results when applied on higher resolutions. To address this issue, here we propose the resolution-robust HNOSeg-XS architecture. We model image segmentation by learnable partial differential equations through the Fourier neural operator which has the zero-shot super-resolution property. By replacing the Fourier transform by the Hartley transform and reformulating the problem in the frequency domain, we created the HNOSeg-XS model, which is resolution robust, fast, memory efficient, and extremely parameter efficient. When tested on the BraTS'23, KiTS'23, and MVSeg'23 datasets with a Tesla V100 GPU, HNOSeg-XS showed its superior resolution robustness with fewer than 34.7k model parameters. It also achieved the overall best inference time (< 0.24 s) and memory efficiency (< 1.8 GiB) compared to the tested CNN and transformer models.

Intelligent quality assessment of ultrasound images for fetal nuchal translucency measurement during the first trimester of pregnancy based on deep learning models.

Liu L, Wang T, Zhu W, Zhang H, Tian H, Li Y, Cai W, Yang P

pubmed logopapersJul 10 2025
As increased nuchal translucency (NT) thickness is notably associated with fetal chromosomal abnormalities, structural defects, and genetic syndromes, accurate measurement of NT thickness is crucial for the screening of fetal abnormalities during the first trimester. We aimed to develop a model for quality assessment of ultrasound images for precise measurement of fetal NT thickness. We collected 2140 ultrasound images of midsagittal sections of the fetal face between 11 and 14 weeks of gestation. Several image segmentation models were trained, and the one exhibiting the highest DSC and HD 95 was chosen to automatically segment the ROI. The radiomics features and deep transfer learning (DTL) features were extracted and selected to construct radiomics and DTL models. Feature screening was conducted using the <i>t</i>-test, Mann-Whitney <i>U</i>-test, Spearman’s rank correlation analysis, and LASSO. We also developed early fusion and late fusion models to integrate the advantages of radiomics and DTL models. The optimal model was compared with junior radiologists. We used SHapley Additive exPlanations (SHAP) to investigate the model’s interpretability. The DeepLabV3 ResNet achieved the best segmentation performance (DSC: 98.07 ± 0.02%, HD 95: 0.75 ± 0.15 mm). The feature fusion model demonstrated the optimal performance (AUC: 0.978, 95% CI: 0.965–0.990, accuracy: 93.2%, sensitivity: 93.1%, specificity: 93.4%, PPV: 93.5%, NPV: 93.0%, precision: 93.5%). This model exhibited more reliable performance compared to junior radiologists and significantly improved the capabilities of junior radiologists. The SHAP summary plot showed DTL features were the most important features for feature fusion model. The proposed models innovatively bridge the gaps in previous studies, achieving intelligent quality assessment of ultrasound images for NT measurement and highly accurate automatic segmentation of ROIs. These models are potential tools to enhance quality control for fetal ultrasound examinations, streamline clinical workflows, and improve the professional skills of less-experienced radiologists. The online version contains supplementary material available at 10.1186/s12884-025-07863-y.

Objective assessment of diagnostic image quality in CT scans: what radiologists and researchers need to know.

Hoeijmakers EJI, Martens B, Wildberger JE, Flohr TG, Jeukens CRLPN

pubmed logopapersJul 10 2025
Quantifying diagnostic image quality (IQ) is not straightforward but essential for optimizing the balance between IQ and radiation dose, and for ensuring consistent high-quality images in CT imaging. This review provides a comprehensive overview of advanced objective reference-free IQ assessment methods for CT scans, beyond standard approaches. A literature search was performed in PubMed and Web of Science up to June 2024 to identify studies using advanced objective image quality methods on clinical CT scans. Only reference-free methods, which do not require a predefined reference image, were included. Traditional methods relying on the standard deviation of the Hounsfield units, the signal-to-noise ratio or contrast-to-noise ratio, all within a manually selected region-of-interest, were excluded. Eligible results were categorized by IQ metric (i.e., noise, contrast, spatial resolution and other) and assessment method (manual, automated, and artificial intelligence (AI)-based). Thirty-five studies were included that proposed or employed reference-free IQ methods, identifying 12 noise assessment methods, 4 contrast assessment methods, 14 spatial resolution assessment methods and 7 others, based on manual, automated or AI-based approaches. This review emphasizes the transition from manual to fully automated approaches for IQ assessment, including the potential of AI-based methods, and it provides a reference tool for researchers and radiologists who need to make a well-considered choice in how to evaluate IQ in CT imaging. This review examines the challenge of quantifying diagnostic CT image quality, essential for optimization studies and ensuring consistent high-quality images, by providing an overview of objective reference-free diagnostic image quality assessment methods beyond standard methods. Quantifying diagnostic CT image quality remains a key challenge. This review summarizes objective diagnostic image quality assessment techniques beyond standard metrics. A decision tree is provided to help select optimal image quality assessment techniques.

FF Swin-Unet: a strategy for automated segmentation and severity scoring of NAFLD.

Fan L, Lei Y, Song F, Sun X, Zhang Z

pubmed logopapersJul 10 2025
Non-alcoholic fatty liver disease (NAFLD) is a significant risk factor for liver cancer and cardiovascular diseases, imposing substantial social and economic burdens. Computed tomography (CT) scans are crucial for diagnosing NAFLD and assessing its severity. However, current manual measurement techniques require considerable human effort and resources from radiologists, and there is a lack of standardized methods for classifying the severity of NAFLD in existing research. To address these challenges, we propose a novel method for NAFLD segmentation and automated severity scoring. The method consists of three key modules: (1) The Semi-automatization nnU-Net Module (SNM) constructs a high-quality dataset by combining manual annotations with semi-automated refinement; (2) The Focal Feature Fusion Swin-Unet Module (FSM) enhances liver and spleen segmentation through multi-scale feature fusion and Swin Transformer-based architectures; (3) The Automated Severity Scoring Module (ASSM) integrates segmentation results with radiological features to classify NAFLD severity. These modules are embedded in a Flask-RESTful API-based system, enabling users to upload abdominal CT data for automated preprocessing, segmentation, and scoring. The Focal Feature Fusion Swin-Unet (FF Swin-Unet) method significantly improves segmentation accuracy, achieving a Dice similarity coefficient (DSC) of 95.64% and a 95th percentile Hausdorff distance (HD95) of 15.94. The accuracy of the automated severity scoring is 90%. With model compression and ONNX deployment, the evaluation speed for each case is approximately 5 seconds. Compared to manual diagnosis, the system can process a large volume of data simultaneously, rapidly, and efficiently while maintaining the same level of diagnostic accuracy, significantly reducing the workload of medical professionals. Our research demonstrates that the proposed system has high accuracy in processing large volumes of CT data and providing automated NAFLD severity scores quickly and efficiently. This method has the potential to significantly reduce the workload of medical professionals and holds immense clinical application potential.

Attention-based multimodal deep learning for interpretable and generalizable prediction of pathological complete response in breast cancer.

Nishizawa T, Maldjian T, Jiao Z, Duong TQ

pubmed logopapersJul 10 2025
Accurate prediction of pathological complete response (pCR) to neoadjuvant chemotherapy has significant clinical utility in the management of breast cancer treatment. Although multimodal deep learning models have shown promise for predicting pCR from medical imaging and other clinical data, their adoption has been limited due to challenges with interpretability and generalizability across institutions. We developed a multimodal deep learning model combining post contrast-enhanced whole-breast MRI at pre- and post-treatment timepoints with non-imaging clinical features. The model integrates 3D convolutional neural networks and self-attention to capture spatial and cross-modal interactions. We utilized two public multi-institutional datasets to perform internal and external validation of the model. For model training and validation, we used data from the I-SPY 2 trial (N = 660). For external validation, we used the I-SPY 1 dataset (N = 114). Of the 660 patients in I-SPY 2, 217 patients achieved pCR (32.88%). Of the 114 patients in I-SPY 1, 29 achieved pCR (25.44%). The attention-based multimodal model yielded the best predictive performance with an AUC of 0.73 ± 0.04 on the internal data and an AUC of 0.71 ± 0.02 on the external dataset. The MRI-only model (internal AUC = 0.68 ± 0.03, external AUC = 0.70 ± 0.04) and the non-MRI clinical features-only model (internal AUC = 0.66 ± 0.08, external AUC = 0.71 ± 0.03) trailed in performance, indicating the combination of both modalities is most effective. We present a robust and interpretable deep learning framework for pCR prediction in breast cancer patients undergoing NAC. By combining imaging and clinical data with attention-based fusion, the model achieves strong predictive performance and generalizes across institutions.

MRI sequence focused on pancreatic morphology evaluation: three-shot turbo spin-echo with deep learning-based reconstruction.

Kadoya Y, Mochizuki K, Asano A, Miyakawa K, Kanatani M, Saito J, Abo H

pubmed logopapersJul 10 2025
BackgroundHigher-resolution magnetic resonance imaging sequences are needed for the early detection of pancreatic cancer.PurposeTo compare the quality of our novel T2-weighted, high-contrast, thin-slice imaging sequence, with an improved spatial resolution and deep learning-based reconstruction (three-shot turbo spin-echo with deep learning-based reconstruction [3S-TSE-DLR]), for imaging the pancreas with imaging using three conventional sequences (half-Fourier acquisition single-shot turbo spin-echo [HASTE], fat-suppressed 3D T1-weighted [FS-3D-T1W] imaging, and magnetic resonance cholangiopancreatography [MRCP]).Material and MethodsPancreatic images of 50 healthy volunteers acquired with 3S-TSE-DLR, HASTE, FS-3D-T1W imaging, and MRCP were compared by two diagnostic radiologists. A 5-point scale was used for assessing motion artifacts, pancreatic margin sharpness, and the ability to identify the main pancreatic duct (MPD) on 3S-TSE-DLR, HASTE, and FS-3D-T1W imaging, respectively. The ability to identify MPD via MRCP was also evaluated.ResultsArtifact scores (the higher the score, the fewer the artifacts) were significantly higher for 3S-TSE-DLR than for HASTE, and significantly lower for 3S-TSE-DLR than for FS-3D-T1W imaging, for both radiologists. Sharpness scores were significantly higher for 3S-TSE-DLR than for HASTE and FS-3D-T1W imaging, for both radiologists. The rate of identification of MPD was significantly higher for 3S-TSE-DLR than for FS-3D-T1W imaging, for both radiologists, and significantly higher for 3S-TSE-DLR than for HASTE for one radiologist. The rate of identification of MPD was not significantly different between 3S-TSE-DLR and MRCP.Conclusion3S-TSE-DLR provides better image sharpness than conventional sequences, can identify MPD equally as well or better than HASTE, and shows identification performance comparable to that of MRCP.

Semi-supervised learning and integration of multi-sequence MR-images for carotid vessel wall and plaque segmentation

Marie-Christine Pali, Christina Schwaiger, Malik Galijasevic, Valentin K. Ladenhauf, Stephanie Mangesius, Elke R. Gizewski

arxiv logopreprintJul 10 2025
The analysis of carotid arteries, particularly plaques, in multi-sequence Magnetic Resonance Imaging (MRI) data is crucial for assessing the risk of atherosclerosis and ischemic stroke. In order to evaluate metrics and radiomic features, quantifying the state of atherosclerosis, accurate segmentation is important. However, the complex morphology of plaques and the scarcity of labeled data poses significant challenges. In this work, we address these problems and propose a semi-supervised deep learning-based approach designed to effectively integrate multi-sequence MRI data for the segmentation of carotid artery vessel wall and plaque. The proposed algorithm consists of two networks: a coarse localization model identifies the region of interest guided by some prior knowledge on the position and number of carotid arteries, followed by a fine segmentation model for precise delineation of vessel walls and plaques. To effectively integrate complementary information across different MRI sequences, we investigate different fusion strategies and introduce a multi-level multi-sequence version of U-Net architecture. To address the challenges of limited labeled data and the complexity of carotid artery MRI, we propose a semi-supervised approach that enforces consistency under various input transformations. Our approach is evaluated on 52 patients with arteriosclerosis, each with five MRI sequences. Comprehensive experiments demonstrate the effectiveness of our approach and emphasize the role of fusion point selection in U-Net-based architectures. To validate the accuracy of our results, we also include an expert-based assessment of model performance. Our findings highlight the potential of fusion strategies and semi-supervised learning for improving carotid artery segmentation in data-limited MRI applications.

Compressive Imaging Reconstruction via Tensor Decomposed Multi-Resolution Grid Encoding

Zhenyu Jin, Yisi Luo, Xile Zhao, Deyu Meng

arxiv logopreprintJul 10 2025
Compressive imaging (CI) reconstruction, such as snapshot compressive imaging (SCI) and compressive sensing magnetic resonance imaging (MRI), aims to recover high-dimensional images from low-dimensional compressed measurements. This process critically relies on learning an accurate representation of the underlying high-dimensional image. However, existing unsupervised representations may struggle to achieve a desired balance between representation ability and efficiency. To overcome this limitation, we propose Tensor Decomposed multi-resolution Grid encoding (GridTD), an unsupervised continuous representation framework for CI reconstruction. GridTD optimizes a lightweight neural network and the input tensor decomposition model whose parameters are learned via multi-resolution hash grid encoding. It inherently enjoys the hierarchical modeling ability of multi-resolution grid encoding and the compactness of tensor decomposition, enabling effective and efficient reconstruction of high-dimensional images. Theoretical analyses for the algorithm's Lipschitz property, generalization error bound, and fixed-point convergence reveal the intrinsic superiority of GridTD as compared with existing continuous representation models. Extensive experiments across diverse CI tasks, including video SCI, spectral SCI, and compressive dynamic MRI reconstruction, consistently demonstrate the superiority of GridTD over existing methods, positioning GridTD as a versatile and state-of-the-art CI reconstruction method.
Page 84 of 1421420 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.