Automated Detection of Lacunes in Brain MR Images Using SAM with Robust Prompts via Self-Distillation and Anatomy-Informed Priors

Authors

Deepika, P.,Shanker, G.,Narayanan, R.,Sundaresan, V.

Affiliations (1)

  • Indian Institute of Science

Abstract

Lacunes, which are small fluid-filled cavities in the brain, are signs of cerebral small vessel disease and have been clinically associated with various neurodegenerative and cerebrovascular diseases. Hence, accurate detection of lacunes is crucial and is one of the initial steps for the precise diagnosis of these diseases. However, developing a robust and consistently reliable method for detecting lacunes is challenging because of the heterogeneity in their appearance, contrast, shape, and size. To address the above challenges, in this study, we propose a lacune detection method using the Segment Anything Model (SAM), guided by point prompts from a candidate prompt generator. The prompt generator initially detects potential lacunes with a high sensitivity using a composite loss function. The SAM model selects true lacunes by delineating their characteristics from mimics such as the sulcus and enlarged perivascular spaces, imitating the clinicians strategy of examining the potential lacunes along all three axes. False positives were further reduced by adaptive thresholds based on the region-wise prevalence of lacunes. We evaluated our method on two diverse, multi-centric MRI datasets, VALDO and ISLES, comprising only FLAIR sequences. Despite diverse imaging conditions and significant variations in slice thickness (0.5-6 mm), our method achieved sensitivities of 84% and 92%, with average false positive rates of 0.05 and 0.06 per slice in ISLES and VALDO datasets respectively. The proposed method outperformed the state-of-the-art methods, demonstrating its effectiveness in lacune detection and quantification.

Topics

radiology and imaging

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.