Sort by:
Page 8 of 19185 results

EdgeSRIE: A hybrid deep learning framework for real-time speckle reduction and image enhancement on portable ultrasound systems

Hyunwoo Cho, Jongsoo Lee, Jinbum Kang, Yangmo Yoo

arxiv logopreprintJul 5 2025
Speckle patterns in ultrasound images often obscure anatomical details, leading to diagnostic uncertainty. Recently, various deep learning (DL)-based techniques have been introduced to effectively suppress speckle; however, their high computational costs pose challenges for low-resource devices, such as portable ultrasound systems. To address this issue, EdgeSRIE, which is a lightweight hybrid DL framework for real-time speckle reduction and image enhancement in portable ultrasound imaging, is introduced. The proposed framework consists of two main branches: an unsupervised despeckling branch, which is trained by minimizing a loss function between speckled images, and a deblurring branch, which restores blurred images to sharp images. For hardware implementation, the trained network is quantized to 8-bit integer precision and deployed on a low-resource system-on-chip (SoC) with limited power consumption. In the performance evaluation with phantom and in vivo analyses, EdgeSRIE achieved the highest contrast-to-noise ratio (CNR) and average gradient magnitude (AGM) compared with the other baselines (different 2-rule-based methods and other 4-DL-based methods). Furthermore, EdgeSRIE enabled real-time inference at over 60 frames per second while satisfying computational requirements (< 20K parameters) on actual portable ultrasound hardware. These results demonstrated the feasibility of EdgeSRIE for real-time, high-quality ultrasound imaging in resource-limited environments.

A preliminary attempt to harmonize using physics-constrained deep neural networks for multisite and multiscanner MRI datasets (PhyCHarm).

Lee G, Ye DH, Oh SH

pubmed logopapersJul 4 2025
In magnetic resonance imaging (MRI), variations in scan parameters and scanner specifications can result in differences in image appearance. To minimize these differences, harmonization in MRI has been suggested as a crucial image processing technique. In this study, we developed an MR physics-based harmonization framework, Physics-Constrained Deep Neural Network for multisite and multiscanner Harmonization (PhyCHarm). PhyCHarm includes two deep neural networks: (1) the Quantitative Maps Generator to generate T<sub>1</sub>- and M<sub>0</sub>-maps and (2) the Harmonization Network. We used an open dataset consisting of 3T MP2RAGE images from 50 healthy individuals for the Quantitative Maps Generator and a traveling dataset consisting of 3T T<sub>1</sub>w images from 9 healthy individuals for the Harmonization Network. PhyCHarm was evaluated using the structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and normalized-root-mean square error (NRMSE) for the Quantitative Maps Generator, and using SSIM, PSNR, and volumetric analysis for the Harmonization network, respectively. PhyCHarm demonstrated increased SSIM and PSNR, the highest Dice score in the FSL FAST segmentation results for gray and white matter compared to U-Net, Pix2Pix, CALAMITI, and HarmonizingFlows. PhyCHarm showed a greater reduction in volume differences after harmonization for gray and white matter than U-Net, Pix2Pix, CALAMITI, or HarmonizingFlows. As an initial step toward developing advanced harmonization techniques, we investigated the applicability of physics-based constraints within a supervised training strategy. The proposed physics constraints could be integrated with unsupervised methods, paving the way for more sophisticated harmonization qualities.

Recent Advances in Applying Machine Learning to Proton Radiotherapy.

Wildman VL, Wynne J, Momin S, Kesarwala AH, Yang X

pubmed logopapersJul 3 2025
In radiation oncology, precision and timeliness of both planning and treatment are paramount values of patient care. Machine learning has increasingly been applied to various aspects of photon radiotherapy to reduce manual error and improve the efficiency of clinical decision making; however, applications to proton therapy remain an emerging field in comparison. This systematic review aims to comprehensively cover all current and potential applications of machine learning to the proton therapy clinical workflow, an area that has not been extensively explored in literature. PubMed and Embase were utilized to identify studies pertinent to machine learning in proton therapy between 2019 to 2024. An initial search on PubMed was made with the search strategy "'proton therapy', 'machine learning', 'deep learning'". A subsequent search on Embase was made with "("proton therapy") AND ("machine learning" OR "deep learning")". In total, 38 relevant studies have been summarized and incorporated. It is observed that U-Net architectures are prevalent in the patient pre-screening process, while convolutional neural networks play an important role in dose and range prediction. Both image quality improvement and transformation between modalities to decrease extraneous radiation are popular targets of various models. To adaptively improve treatments, advanced architectures such as general deep inception or deep cascaded convolution neural networks improve online dose verification and range monitoring. With the rising clinical usage of proton therapy, machine learning models have been increasingly proposed to facilitate both treatment and discovery. Significantly improving patient screening, planning, image quality, and dose and range calculation, machine learning is advancing the precision and personalization of proton therapy.

Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs

Francesco Di Salvo, Hanh Huyen My Nguyen, Christian Ledig

arxiv logopreprintJul 3 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.

BronchoGAN: Anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy

Ahmad Soliman, Ron Keuth, Marian Himstedt

arxiv logopreprintJul 2 2025
The limited availability of bronchoscopy images makes image synthesis particularly interesting for training deep learning models. Robust image translation across different domains -- virtual bronchoscopy, phantom as well as in-vivo and ex-vivo image data -- is pivotal for clinical applications. This paper proposes BronchoGAN introducing anatomical constraints for image-to-image translation being integrated into a conditional GAN. In particular, we force bronchial orifices to match across input and output images. We further propose to use foundation model-generated depth images as intermediate representation ensuring robustness across a variety of input domains establishing models with substantially less reliance on individual training datasets. Moreover our intermediate depth image representation allows to easily construct paired image data for training. Our experiments showed that input images from different domains (e.g. virtual bronchoscopy, phantoms) can be successfully translated to images mimicking realistic human airway appearance. We demonstrated that anatomical settings (i.e. bronchial orifices) can be robustly preserved with our approach which is shown qualitatively and quantitatively by means of improved FID, SSIM and dice coefficients scores. Our anatomical constraints enabled an improvement in the Dice coefficient of up to 0.43 for synthetic images. Through foundation models for intermediate depth representations, bronchial orifice segmentation integrated as anatomical constraints into conditional GANs we are able to robustly translate images from different bronchoscopy input domains. BronchoGAN allows to incorporate public CT scan data (virtual bronchoscopy) in order to generate large-scale bronchoscopy image datasets with realistic appearance. BronchoGAN enables to bridge the gap of missing public bronchoscopy images.

Multi channel fusion diffusion models for brain tumor MRI data augmentation.

Zuo C, Xue J, Yuan C

pubmed logopapersJul 2 2025
The early diagnosis of brain tumors is crucial for patient prognosis, and medical imaging techniques such as MRI and CT scans are essential tools for diagnosing brain tumors. However, high-quality medical image data for brain tumors is often scarce and difficult to obtain, which hinders the development and application of medical image analysis models. With the advancement of artificial intelligence, particularly deep learning technologies in the field of medical imaging, new concepts and tools have been introduced for the early diagnosis, treatment planning, and prognosis evaluation of brain tumors. To address the challenge of imbalanced brain tumor datasets, we propose a novel data augmentation technique based on a diffusion model, referred to as the Multi-Channel Fusion Diffusion Model(MCFDiffusion). This method tackles the issue of data imbalance by converting healthy brain MRI images into images containing tumors, thereby enabling deep learning models to achieve better performance and assisting physicians in making more accurate diagnoses and treatment plans. In our experiments, we used a publicly available brain tumor dataset and compared the performance of image classification and segmentation tasks between the original data and the data enhanced by our method. The results show that the enhanced data improved the classification accuracy by approximately 3% and the Dice coefficient for segmentation tasks by 1.5%-2.5%. Our research builds upon previous work involving Denoising Diffusion Implicit Models (DDIMs) for image generation and further enhances the applicability of this model in medical imaging by introducing a multi-channel approach and fusing defective areas with healthy images. Future work will explore the application of this model to various types of medical images and further optimize the model to improve its generalization capabilities. We release our code at https://github.com/feiyueaaa/MCFDiffusion.

3D MedDiffusion: A 3D Medical Latent Diffusion Model for Controllable and High-quality Medical Image Generation.

Wang H, Liu Z, Sun K, Wang X, Shen D, Cui Z

pubmed logopapersJul 2 2025
The generation of medical images presents significant challenges due to their high-resolution and three-dimensional nature. Existing methods often yield suboptimal performance in generating high-quality 3D medical images, and there is currently no universal generative framework for medical imaging. In this paper, we introduce a 3D Medical Latent Diffusion (3D MedDiffusion) model for controllable, high-quality 3D medical image generation. 3D MedDiffusion incorporates a novel, highly efficient Patch-Volume Autoencoder that compresses medical images into latent space through patch-wise encoding and recovers back into image space through volume-wise decoding. Additionally, we design a new noise estimator to capture both local details and global structural information during diffusion denoising process. 3D MedDiffusion can generate fine-detailed, high-resolution images (up to 512x512x512) and effectively adapt to various downstream tasks as it is trained on large-scale datasets covering CT and MRI modalities and different anatomical regions (from head to leg). Experimental results demonstrate that 3D MedDiffusion surpasses state-of-the-art methods in generative quality and exhibits strong generalizability across tasks such as sparse-view CT reconstruction, fast MRI reconstruction, and data augmentation for segmentationand classification. Source code and checkpoints are available at https://github.com/ShanghaiTech-IMPACT/3D-MedDiffusion.

A Multi-Centric Anthropomorphic 3D CT Phantom-Based Benchmark Dataset for Harmonization

Mohammadreza Amirian, Michael Bach, Oscar Jimenez-del-Toro, Christoph Aberle, Roger Schaer, Vincent Andrearczyk, Jean-Félix Maestrati, Maria Martin Asiain, Kyriakos Flouris, Markus Obmann, Clarisse Dromain, Benoît Dufour, Pierre-Alexandre Alois Poletti, Hendrik von Tengg-Kobligk, Rolf Hügli, Martin Kretzschmar, Hatem Alkadhi, Ender Konukoglu, Henning Müller, Bram Stieltjes, Adrien Depeursinge

arxiv logopreprintJul 2 2025
Artificial intelligence (AI) has introduced numerous opportunities for human assistance and task automation in medicine. However, it suffers from poor generalization in the presence of shifts in the data distribution. In the context of AI-based computed tomography (CT) analysis, significant data distribution shifts can be caused by changes in scanner manufacturer, reconstruction technique or dose. AI harmonization techniques can address this problem by reducing distribution shifts caused by various acquisition settings. This paper presents an open-source benchmark dataset containing CT scans of an anthropomorphic phantom acquired with various scanners and settings, which purpose is to foster the development of AI harmonization techniques. Using a phantom allows fixing variations attributed to inter- and intra-patient variations. The dataset includes 1378 image series acquired with 13 scanners from 4 manufacturers across 8 institutions using a harmonized protocol as well as several acquisition doses. Additionally, we present a methodology, baseline results and open-source code to assess image- and feature-level stability and liver tissue classification, promoting the development of AI harmonization strategies.

Robust Multi-contrast MRI Medical Image Translation via Knowledge Distillation and Adversarial Attack.

Zhao X, Liang F, Long C, Yuan Z, Zhao J

pubmed logopapersJul 2 2025
Medical image translation is of great value but is very difficult due to the requirement with style change of noise pattern and anatomy invariance of image content. Various deep learning methods like the mainstream GAN, Transformer and Diffusion models have been developed to learn the multi-modal mapping to obtain the translated images, but the results from the generator are still far from being perfect for medical images. In this paper, we propose a robust multi-contrast translation framework for MRI medical images with knowledge distillation and adversarial attack, which can be integrated with any generator. The additional refinement network consists of teacher and student modules with similar structures but different inputs. Unlike the existing knowledge distillation works, our teacher module is designed as a registration network with more inputs to better learn the noise distribution well and further refine the translated results in the training stage. The knowledge is then well distilled to the student module to ensure that better translation results are generated. We also introduce an adversarial attack module before the generator. Such a black-box attacker can generate meaningful perturbations and adversarial examples throughout the training process. Our model has been tested on two public MRI medical image datasets considering different types and levels of perturbations, and each designed module is verified by the ablation study. The extensive experiments and comparison with SOTA methods have strongly demonstrated our model's superiority of refinement and robustness.

Medical image translation with deep learning: Advances, datasets and perspectives.

Chen J, Ye Z, Zhang R, Li H, Fang B, Zhang LB, Wang W

pubmed logopapersJul 1 2025
Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to another, preserving both anatomical structures and cross-modal features, thus enabling efficient and accurate modality transfer and offering unique advantages for model development and clinical practice. This paper reviews the latest advancements in deep learning(DL)-based medical image translation. Initially, it elaborates on the diverse tasks and practical applications of medical image translation. Subsequently, it provides an overview of fundamental models, including convolutional neural networks (CNNs), transformers, and state space models (SSMs). Additionally, it delves into generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Autoregressive Models (ARs), diffusion Models, and flow Models. Evaluation metrics for assessing translation quality are discussed, emphasizing their importance. Commonly used datasets in this field are also analyzed, highlighting their unique characteristics and applications. Looking ahead, the paper identifies future trends, challenges, and proposes research directions and solutions in medical image translation. It aims to serve as a valuable reference and inspiration for researchers, driving continued progress and innovation in this area.
Page 8 of 19185 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.