Sort by:
Page 8 of 1093 results

Diffusion based multi-domain neuroimaging harmonization method with preservation of anatomical details.

Lan H, Varghese BA, Sheikh-Bahaei N, Sepehrband F, Toga AW, Choupan J

pubmed logopapersMay 26 2025
In multi-center neuroimaging studies, the technical variability caused by the batch differences could hinder the ability to aggregate data across sites, and negatively impact the reliability of study-level results. Recent efforts in neuroimaging harmonization have aimed to minimize these technical gaps and reduce technical variability across batches. While Generative Adversarial Networks (GAN) has been a prominent method for addressing harmonization tasks, GAN-harmonized images suffer from artifacts or anatomical distortions. Given the advancements of denoising diffusion probabilistic model which produces high-fidelity images, we have assessed the efficacy of the diffusion model for neuroimaging harmonization. While GAN-based methods intrinsically transform imaging styles between two domains per model, we have demonstrated the diffusion model's superior capability in harmonizing images across multiple domains with single model. Our experiments highlight that the learned domain invariant anatomical condition reinforces the model to accurately preserve the anatomical details while differentiating batch differences at each diffusion step. Our proposed method has been tested using T1-weighted MRI images from two public neuroimaging datasets of ADNI1 and ABIDE II, yielding harmonization results with consistent anatomy preservation and superior FID score compared to the GAN-based methods. We have conducted multiple analyses including extensive quantitative and qualitative evaluations against the baseline models, ablation study showcasing the benefits of the learned domain invariant conditions, and improvements in the consistency of perivascular spaces segmentation analysis and volumetric analysis through harmonization.

MedITok: A Unified Tokenizer for Medical Image Synthesis and Interpretation

Chenglong Ma, Yuanfeng Ji, Jin Ye, Zilong Li, Chenhui Wang, Junzhi Ning, Wei Li, Lihao Liu, Qiushan Guo, Tianbin Li, Junjun He, Hongming Shan

arxiv logopreprintMay 25 2025
Advanced autoregressive models have reshaped multimodal AI. However, their transformative potential in medical imaging remains largely untapped due to the absence of a unified visual tokenizer -- one capable of capturing fine-grained visual structures for faithful image reconstruction and realistic image synthesis, as well as rich semantics for accurate diagnosis and image interpretation. To this end, we present MedITok, the first unified tokenizer tailored for medical images, encoding both low-level structural details and high-level clinical semantics within a unified latent space. To balance these competing objectives, we introduce a novel two-stage training framework: a visual representation alignment stage that cold-starts the tokenizer reconstruction learning with a visual semantic constraint, followed by a textual semantic representation alignment stage that infuses detailed clinical semantics into the latent space. Trained on the meticulously collected large-scale dataset with over 30 million medical images and 2 million image-caption pairs, MedITok achieves state-of-the-art performance on more than 30 datasets across 9 imaging modalities and 4 different tasks. By providing a unified token space for autoregressive modeling, MedITok supports a wide range of tasks in clinical diagnostics and generative healthcare applications. Model and code will be made publicly available at: https://github.com/Masaaki-75/meditok.

Artificial Intelligence enhanced R1 maps can improve lesion detection in focal epilepsy in children

Doumou, G., D'Arco, F., Figini, M., Lin, H., Lorio, S., Piper, R., O'Muircheartaigh, J., Cross, H., Weiskopf, N., Alexander, D., Carmichael, D. W.

medrxiv logopreprintMay 23 2025
Background and purposeMRI is critical for the detection of subtle cortical pathology in epilepsy surgery assessment. This can be aided by improved MRI quality and resolution using ultra-high field (7T). But poor access and long scan durations limit widespread use, particularly in a paediatric setting. AI-based learning approaches may provide similar information by enhancing data obtained with conventional MRI (3T). We used a convolutional neural network trained on matched 3T and 7T images to enhance quantitative R1-maps (longitudinal relaxation rate) obtained at 3T in paediatric epilepsy patients and to determine their potential clinical value for lesion identification. Materials and MethodsA 3D U-Net was trained using paired patches from 3T and 7T R1-maps from n=10 healthy volunteers. The trained network was applied to enhance paediatric focal epilepsy 3T R1 images from a different scanner/site (n=17 MRI lesion positive / n=14 MR-negative). Radiological review assessed image quality, as well as lesion identification and visualization of enhanced maps in comparison to the 3T R1-maps without clinical information. Lesion appearance was then compared to 3D-FLAIR. ResultsAI enhanced R1 maps were superior in terms of image quality in comparison to the original 3T R1 maps, while preserving and enhancing the visibility of lesions. After exclusion of 5/31 patients (due to movement artefact or incomplete data), lesions were detected in AI Enhanced R1 maps for 14/15 (93%) MR-positive and 4/11 (36%) MR-negative patients. ConclusionAI enhanced R1 maps improved the visibility of lesions in MR positive patients, as well as providing higher sensitivity in the MR-negative group compared to either the original 3T R1-maps or 3D-FLAIR. This provides promising initial evidence that 3T quantitative maps can outperform conventional 3T imaging via enhancement by an AI model trained on 7T MRI data, without the need for pathology-specific information.

HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading.

Zhang Q, Chuang C, Zhang S, Zhao Z, Wang K, Xu J, Sun J

pubmed logopapersMay 22 2025
Osteoporotic vertebral compression fractures (OVCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, the absence of pre-fracture CT scans and standardized vertebral references leads to measurement errors and inter-observer variability, while irregular compression patterns further challenge the precise grading of fracture severity. While deep learning methods have shown promise in aiding OVCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-OVCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and in-house dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic accuracy in clinical settings and assisting in surgical decision-making.

Daily proton dose re-calculation on deep-learning corrected cone-beam computed tomography scans.

Vestergaard CD, Muren LP, Elstrøm UV, Stolarczyk L, Nørrevang O, Petersen SE, Taasti VT

pubmed logopapersMay 22 2025
Synthetic CT (sCT) generation from cone-beam CT (CBCT) must maintain stable performance and allow for accurate dose calculation across all treatment fractions to effectively support adaptive proton therapy. This study evaluated a 3D deep-learning (DL) network for sCT generation for prostate cancer patients over the full treatment course. Patient data from 25/6 prostate cancer patients were used to train/test the DL network. Patients in the test set had a planning CT, 39 CBCT images, and at least one repeat CT (reCT) used for replanning. The generated sCT images were compared to fan-beam planning and reCT images in terms of i) CT number accuracy and stability within spherical regions-of-interest (ROIs) in the bladder, prostate, and femoral heads, ii) proton range calculation accuracy through single-spot plans, and iii) dose trends in target coverage over the treatment course (one patient). The sCT images demonstrated image quality comparable to CT, while preserving the CBCT anatomy. The mean CT numbers on the sCT and CT images were comparable, e.g. for the prostate ROI they ranged from 29 HU to 59 HU for sCT, and from 36 HU to 50 HU for CT. The largest median proton range difference was 1.9 mm. Proton dose calculations showed excellent target coverage (V95%≥99.6 %) for the high-dose target. The DL network effectively generated high-quality sCT images with CT numbers, proton range, and dose characteristics comparable to fan-beam CT. Its robustness against intra-patient variations makes it a feasible tool for adaptive proton therapy.

Machine Learning Derived Blood Input for Dynamic PET Images of Rat Heart

Shubhrangshu Debsarkar, Bijoy Kundu

arxiv logopreprintMay 21 2025
Dynamic FDG PET imaging study of n = 52 rats including 26 control Wistar-Kyoto (WKY) rats and 26 experimental spontaneously hypertensive rats (SHR) were performed using a Siemens microPET and Albira trimodal scanner longitudinally at 1, 2, 3, 5, 9, 12 and 18 months of age. A 15-parameter dual output model correcting for spill over contamination and partial volume effects with peak fitting cost functions was developed for simultaneous estimation of model corrected blood input function (MCIF) and kinetic rate constants for dynamic FDG PET images of rat heart in vivo. Major drawbacks of this model are its dependence on manual annotations for the Image Derived Input Function (IDIF) and manual determination of crucial model parameters to compute MCIF. To overcome these limitations, we performed semi-automated segmentation and then formulated a Long-Short-Term Memory (LSTM) cell network to train and predict MCIF in test data using a concatenation of IDIFs and myocardial inputs and compared them with reference-modeled MCIF. Thresholding along 2D plane slices with two thresholds, with T1 representing high-intensity myocardium, and T2 representing lower-intensity rings, was used to segment the area of the LV blood pool. The resultant IDIF and myocardial TACs were used to compute the corresponding reference (model) MCIF for all data sets. The segmented IDIF and the myocardium formed the input for the LSTM network. A k-fold cross validation structure with a 33:8:11 split and 5 folds was utilized to create the model and evaluate the performance of the LSTM network for all datasets. To overcome the sparseness of data as time steps increase, midpoint interpolation was utilized to increase the density of datapoints beyond time = 10 minutes. The model utilizing midpoint interpolation was able to achieve a 56.4% improvement over previous Mean Squared Error (MSE).

Large medical image database impact on generalizability of synthetic CT scan generation.

Boily C, Mazellier JP, Meyer P

pubmed logopapersMay 21 2025
This study systematically examines the impact of training database size and the generalizability of deep learning models for synthetic medical image generation. Specifically, we employ a Cycle-Consistency Generative Adversarial Network (CycleGAN) with softly paired data to synthesize kilovoltage computed tomography (kVCT) images from megavoltage computed tomography (MVCT) scans. Unlike previous works, which were constrained by limited data availability, our study uses an extensive database comprising 4,000 patient CT scans, an order of magnitude larger than prior research, allowing for a more rigorous assessment of database size in medical image translation. We quantitatively evaluate the fidelity of the generated synthetic images using established image similarity metrics, including Mean Absolute Error (MAE) and Structural Similarity Index Measure (SSIM). Beyond assessing image quality, we investigate the model's capacity for generalization by analyzing its performance across diverse patient subgroups, considering factors such as sex, age, and anatomical region. This approach enables a more granular understanding of how dataset composition influences model robustness.

Synthesizing [<sup>18</sup>F]PSMA-1007 PET bone images from CT images with GAN for early detection of prostate cancer bone metastases: a pilot validation study.

Chai L, Yao X, Yang X, Na R, Yan W, Jiang M, Zhu H, Sun C, Dai Z, Yang X

pubmed logopapersMay 21 2025
[<sup>18</sup>F]FDG PET/CT scan combined with [<sup>18</sup>F]PSMA-1007 PET/CT scan is commonly conducted for detecting bone metastases in prostate cancer (PCa). However, it is expensive and may expose patients to more radiation hazards. This study explores deep learning (DL) techniques to synthesize [<sup>18</sup>F]PSMA-1007 PET bone images from CT bone images for the early detection of bone metastases in PCa, which may reduce additional PET/CT scans and relieve the burden on patients. We retrospectively collected paired whole-body (WB) [<sup>18</sup>F]PSMA-1007 PET/CT images from 152 patients with clinical and pathological diagnosis results, including 123 PCa and 29 cases of benign lesions. The average age of the patients was 67.48 ± 10.87 years, and the average lesion size was 8.76 ± 15.5 mm. The paired low-dose CT and PET images were preprocessed and segmented to construct the WB bone structure images. 152 subjects were randomly stratified into training, validation, and test groups in the number of 92:41:19. Two generative adversarial network (GAN) models-Pix2pix and Cycle GAN-were trained to synthesize [<sup>18</sup>F]PSMA-1007 PET bone images from paired CT bone images. The performance of two synthesis models was evaluated using quantitative metrics of mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index metrics (SSIM), as well as the target-to-background ratio (TBR). The results of DL-based image synthesis indicated that the synthesis of [<sup>18</sup>F]PSMA-1007 PET bone images from low-dose CT bone images was highly feasible. The Pix2pix model performed better with an SSIM of 0.97, PSNR of 44.96, MSE of 0.80, and MAE of 0.10, respectively. The TBRs of bone metastasis lesions calculated on DL-synthesized PET bone images were highly correlated with those of real PET bone images (Pearson's r > 0.90) and had no significant differences (p < 0.05). It is feasible to generate synthetic [<sup>18</sup>F]PSMA-1007 PET bone images from CT bone images by using DL techniques with reasonable accuracy, which can provide information for early detection of PCa bone metastases.

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

arxiv logopreprintMay 20 2025
Brain-to-image decoding has been recently propelled by the progress in generative AI models and the availability of large ultra-high field functional Magnetic Resonance Imaging (fMRI). However, current approaches depend on complicated multi-stage pipelines and preprocessing steps that typically collapse the temporal dimension of brain recordings, thereby limiting time-resolved brain decoders. Here, we introduce Dynadiff (Dynamic Neural Activity Diffusion for Image Reconstruction), a new single-stage diffusion model designed for reconstructing images from dynamically evolving fMRI recordings. Our approach offers three main contributions. First, Dynadiff simplifies training as compared to existing approaches. Second, our model outperforms state-of-the-art models on time-resolved fMRI signals, especially on high-level semantic image reconstruction metrics, while remaining competitive on preprocessed fMRI data that collapse time. Third, this approach allows a precise characterization of the evolution of image representations in brain activity. Overall, this work lays the foundation for time-resolved brain-to-image decoding.

Expert-guided StyleGAN2 image generation elevates AI diagnostic accuracy for maxillary sinus lesions.

Zeng P, Song R, Chen S, Li X, Li H, Chen Y, Gong Z, Cai G, Lin Y, Shi M, Huang K, Chen Z

pubmed logopapersMay 20 2025
The progress of artificial intelligence (AI) research in dental medicine is hindered by data acquisition challenges and imbalanced distributions. These problems are especially apparent when planning to develop AI-based diagnostic or analytic tools for various lesions, such as maxillary sinus lesions (MSL) including mucosal thickening and polypoid lesions. Traditional unsupervised generative models struggle to simultaneously control the image realism, diversity, and lesion-type specificity. This study establishes an expert-guided framework to overcome these limitations to elevate AI-based diagnostic accuracy. A StyleGAN2 framework was developed for generating clinically relevant MSL images (such as mucosal thickening and polypoid lesion) under expert control. The generated images were then integrated into training datasets to evaluate their effect on ResNet50's diagnostic performance. Here we show: 1) Both lesion subtypes achieve satisfactory fidelity metrics, with structural similarity indices (SSIM > 0.996) and maximum mean discrepancy values (MMD < 0.032), and clinical validation scores close to those of real images; 2) Integrating baseline datasets with synthetic images significantly enhances diagnostic accuracy for both internal and external test sets, particularly improving area under the precision-recall curve (AUPRC) by approximately 8% and 14% for mucosal thickening and polypoid lesions in the internal test set, respectively. The StyleGAN2-based image generation tool effectively addressed data scarcity and imbalance through high-quality MSL image synthesis, consequently boosting diagnostic model performance. This work not only facilitates AI-assisted preoperative assessment for maxillary sinus lift procedures but also establishes a methodological framework for overcoming data limitations in medical image analysis.
Page 8 of 1093 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.