Sort by:
Page 8 of 1161158 results

An Interpretable Multi-Plane Fusion Framework With Kolmogorov-Arnold Network Guided Attention Enhancement for Alzheimer's Disease Diagnosis

Xiaoxiao Yang, Meiliang Liu, Yunfang Xu, Zijin Li, Zhengye Si, Xinyue Yang, Zhiwen Zhao

arxiv logopreprintAug 8 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely impairs cognitive function and quality of life. Timely intervention in AD relies heavily on early and precise diagnosis, which remains challenging due to the complex and subtle structural changes in the brain. Most existing deep learning methods focus only on a single plane of structural magnetic resonance imaging (sMRI) and struggle to accurately capture the complex and nonlinear relationships among pathological regions of the brain, thus limiting their ability to precisely identify atrophic features. To overcome these limitations, we propose an innovative framework, MPF-KANSC, which integrates multi-plane fusion (MPF) for combining features from the coronal, sagittal, and axial planes, and a Kolmogorov-Arnold Network-guided spatial-channel attention mechanism (KANSC) to more effectively learn and represent sMRI atrophy features. Specifically, the proposed model enables parallel feature extraction from multiple anatomical planes, thus capturing more comprehensive structural information. The KANSC attention mechanism further leverages a more flexible and accurate nonlinear function approximation technique, facilitating precise identification and localization of disease-related abnormalities. Experiments on the ADNI dataset confirm that the proposed MPF-KANSC achieves superior performance in AD diagnosis. Moreover, our findings provide new evidence of right-lateralized asymmetry in subcortical structural changes during AD progression, highlighting the model's promising interpretability.

Can Diffusion Models Bridge the Domain Gap in Cardiac MR Imaging?

Xin Ci Wong, Duygu Sarikaya, Kieran Zucker, Marc De Kamps, Nishant Ravikumar

arxiv logopreprintAug 8 2025
Magnetic resonance (MR) imaging, including cardiac MR, is prone to domain shift due to variations in imaging devices and acquisition protocols. This challenge limits the deployment of trained AI models in real-world scenarios, where performance degrades on unseen domains. Traditional solutions involve increasing the size of the dataset through ad-hoc image augmentation or additional online training/transfer learning, which have several limitations. Synthetic data offers a promising alternative, but anatomical/structural consistency constraints limit the effectiveness of generative models in creating image-label pairs. To address this, we propose a diffusion model (DM) trained on a source domain that generates synthetic cardiac MR images that resemble a given reference. The synthetic data maintains spatial and structural fidelity, ensuring similarity to the source domain and compatibility with the segmentation mask. We assess the utility of our generative approach in multi-centre cardiac MR segmentation, using the 2D nnU-Net, 3D nnU-Net and vanilla U-Net segmentation networks. We explore domain generalisation, where, domain-invariant segmentation models are trained on synthetic source domain data, and domain adaptation, where, we shift target domain data towards the source domain using the DM. Both strategies significantly improved segmentation performance on data from an unseen target domain, in terms of surface-based metrics (Welch's t-test, p < 0.01), compared to training segmentation models on real data alone. The proposed method ameliorates the need for transfer learning or online training to address domain shift challenges in cardiac MR image analysis, especially useful in data-scarce settings.

XAG-Net: A Cross-Slice Attention and Skip Gating Network for 2.5D Femur MRI Segmentation

Byunghyun Ko, Anning Tian, Jeongkyu Lee

arxiv logopreprintAug 8 2025
Accurate segmentation of femur structures from Magnetic Resonance Imaging (MRI) is critical for orthopedic diagnosis and surgical planning but remains challenging due to the limitations of existing 2D and 3D deep learning-based segmentation approaches. In this study, we propose XAG-Net, a novel 2.5D U-Net-based architecture that incorporates pixel-wise cross-slice attention (CSA) and skip attention gating (AG) mechanisms to enhance inter-slice contextual modeling and intra-slice feature refinement. Unlike previous CSA-based models, XAG-Net applies pixel-wise softmax attention across adjacent slices at each spatial location for fine-grained inter-slice modeling. Extensive evaluations demonstrate that XAG-Net surpasses baseline 2D, 2.5D, and 3D U-Net models in femur segmentation accuracy while maintaining computational efficiency. Ablation studies further validate the critical role of the CSA and AG modules, establishing XAG-Net as a promising framework for efficient and accurate femur MRI segmentation.

Variational volume reconstruction with the Deep Ritz Method

Conor Rowan, Sumedh Soman, John A. Evans

arxiv logopreprintAug 8 2025
We present a novel approach to variational volume reconstruction from sparse, noisy slice data using the Deep Ritz method. Motivated by biomedical imaging applications such as MRI-based slice-to-volume reconstruction (SVR), our approach addresses three key challenges: (i) the reliance on image segmentation to extract boundaries from noisy grayscale slice images, (ii) the need to reconstruct volumes from a limited number of slice planes, and (iii) the computational expense of traditional mesh-based methods. We formulate a variational objective that combines a regression loss designed to avoid image segmentation by operating on noisy slice data directly with a modified Cahn-Hilliard energy incorporating anisotropic diffusion to regularize the reconstructed geometry. We discretize the phase field with a neural network, approximate the objective at each optimization step with Monte Carlo integration, and use ADAM to find the minimum of the approximated variational objective. While the stochastic integration may not yield the true solution to the variational problem, we demonstrate that our method reliably produces high-quality reconstructed volumes in a matter of seconds, even when the slice data is sparse and noisy.

impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction

Maria Boyko, Aleksandra Beliaeva, Dmitriy Kornilov, Alexander Bernstein, Maxim Sharaev

arxiv logopreprintAug 8 2025
The use of diverse modalities, such as omics, medical images, and clinical data can not only improve the performance of prognostic models but also deepen an understanding of disease mechanisms and facilitate the development of novel treatment approaches. However, medical data are complex, often incomplete, and contains missing modalities, making effective handling its crucial for training multimodal models. We introduce impuTMAE, a novel transformer-based end-to-end approach with an efficient multimodal pre-training strategy. It learns inter- and intra-modal interactions while simultaneously imputing missing modalities by reconstructing masked patches. Our model is pre-trained on heterogeneous, incomplete data and fine-tuned for glioma survival prediction using TCGA-GBM/LGG and BraTS datasets, integrating five modalities: genetic (DNAm, RNA-seq), imaging (MRI, WSI), and clinical data. By addressing missing data during pre-training and enabling efficient resource utilization, impuTMAE surpasses prior multimodal approaches, achieving state-of-the-art performance in glioma patient survival prediction. Our code is available at https://github.com/maryjis/mtcp

Postmortem Validation of Quantitative MRI for White Matter Hyperintensities in Alzheimer's Disease

Mojtabai, M., Kumar, R., Honnorat, N., Li, K., Wang, D., Li, J., Lee, R. F., Richardson, T. E., Cavazos, J. E., Bouhrara, M., Toledo, J. B., Heckbert, S., Flanagan, M. E., Bieniek, K. F., Walker, J. M., Seshadri, S., Habes, M.

medrxiv logopreprintAug 8 2025
White matter hyperintensities (WMH) are frequently observed on MRI in aging and Alzheimers disease (AD), yet their microstructural pathology remains poorly characterized. Conventional MRI sequences provide limited information to describe the tissue abnormalities underlying WMH, while histopathology--the gold standard--can only be applied postmortem. Quantitative MRI (qMRI) offers promising non-invasive alternatives to postmortem histopathology, but lacks histological validation of these metrics in AD. In this study, we examined the relationship between MRI metrics and histopathology in postmortem brain scans from eight donors with AD from the South Texas Alzheimers Disease Research Center. Regions of interest are delineated by aligning MRI-identified WMH in the brain donor scans with postmortem histological sections. Histopathological features, including myelin integrity, tissue vacuolation, and gliosis, are quantified within these regions using machine learning. We report the correlations between these histopathological measures and two qMRI metrics: T2 and absolute myelin water signal (aMWS) maps, as well as conventional T1w/T2w MRI. The results derived from aMWS and T2 mapping indicate a strong association between WMH, myelin loss, and increased tissue vacuolation. Bland-Altman analyses indicated that T2 mapping showed more consistent agreement with histopathology, whereas the derived aMWS demonstrated signs of systematic bias. T1w/T2w values exhibited weaker associations with histological alterations. Additionally, we observed distinct patterns of gliosis in periventricular and subcortical WMH. Our study presents one of the first histopathological validations of qMRI in AD, confirming that aMWS and T2 mapping are robust, non-invasive biomarkers that offer promising ways to monitor white matter pathology in neurodegenerative disorders.

Few-Shot Deployment of Pretrained MRI Transformers in Brain Imaging Tasks

Mengyu Li, Guoyao Shen, Chad W. Farris, Xin Zhang

arxiv logopreprintAug 7 2025
Machine learning using transformers has shown great potential in medical imaging, but its real-world applicability remains limited due to the scarcity of annotated data. In this study, we propose a practical framework for the few-shot deployment of pretrained MRI transformers in diverse brain imaging tasks. By utilizing the Masked Autoencoder (MAE) pretraining strategy on a large-scale, multi-cohort brain MRI dataset comprising over 31 million slices, we obtain highly transferable latent representations that generalize well across tasks and datasets. For high-level tasks such as classification, a frozen MAE encoder combined with a lightweight linear head achieves state-of-the-art accuracy in MRI sequence identification with minimal supervision. For low-level tasks such as segmentation, we propose MAE-FUnet, a hybrid architecture that fuses multiscale CNN features with pretrained MAE embeddings. This model consistently outperforms other strong baselines in both skull stripping and multi-class anatomical segmentation under data-limited conditions. With extensive quantitative and qualitative evaluations, our framework demonstrates efficiency, stability, and scalability, suggesting its suitability for low-resource clinical environments and broader neuroimaging applications.

UltimateSynth: MRI Physics for Pan-Contrast AI

Adams, R., Huynh, K. M., Zhao, W., Hu, S., Lyu, W., Ahmad, S., Ma, D., Yap, P.-T.

biorxiv logopreprintAug 7 2025
Magnetic resonance imaging (MRI) is commonly used in healthcare for its ability to generate diverse tissue contrasts without ionizing radiation. However, this flexibility complicates downstream analysis, as computational tools are often tailored to specific types of MRI and lack generalizability across the full spectrum of scans used in healthcare. Here, we introduce a versatile framework for the development and validation of AI models that can robustly process and analyze the full spectrum of scans achievable with MRI, enabling model deployment across scanner models, scan sequences, and age groups. Core to our framework is UltimateSynth, a technology that combines tissue physiology and MR physics in synthesizing realistic images across a comprehensive range of meaningful contrasts. This pan-contrast capability bolsters the AI development life cycle through efficient data labeling, generalizable model training, and thorough performance benchmarking. We showcase the effectiveness of UltimateSynth by training an off-the-shelf U-Net to generalize anatomical segmentation across any MR contrast. The U-Net yields highly robust tissue volume estimates, with variability under 4% across 150,000 unique-contrast images, 3.8% across 2,000+ low-field 0.3T scans, and 3.5% across 8,000+ images spanning the human lifespan from ages 0 to 100.

Best Machine Learning Model for Predicting Axial Symptoms After Unilateral Laminoplasty: Based on C2 Spinous Process Muscle Radiomics Features and Sagittal Parameters.

Zheng B, Zhu Z, Liang Y, Liu H

pubmed logopapersAug 7 2025
Study DesignRetrospective study.ObjectiveTo develop a machine learning model for predicting axial symptoms (AS) after unilateral laminoplasty by integrating C2 spinous process muscle radiomics features and cervical sagittal parameters.MethodsIn this retrospective study of 96 cervical myelopathy patients (30 with AS, 66 without) who underwent unilateral laminoplasty between 2018-2022, we extracted radiomics features from preoperative MRI of C2 spinous muscles using PyRadiomics. Clinical data including C2-C7 Cobb angle, cervical sagittal vertical axis (cSVA), T1 slope (T1S) and C2 muscle fat infiltration are collected for clinical model construction. After LASSO regression feature selection, we constructed six machine learning models (SVM, KNN, Random Forest, ExtraTrees, XGBoost, and LightGBM) and evaluated their performance using ROC curves and AUC.ResultsThe AS group demonstrated significantly lower preoperative C2-C7 Cobb angles (12.80° ± 7.49° vs 18.02° ± 8.59°, <i>P</i> = .006), higher cSVA (3.01 cm ± 0.87 vs 2.46 ± 1.19 cm, <i>P</i> = .026), T1S (26.68° ± 5.12° vs 23.66° ± 7.58°, <i>P</i> = .025) and higher C2 muscle fat infiltration (23.73 ± 7.78 vs 20.62 ± 6.93 <i>P</i> = .026). Key radiomics features included local binary pattern texture features and wavelet transform characteristics. The combined model integrating radiomics and clinical parameters achieved the best performance with test AUC of 0.881, sensitivity of 0.833, and specificity of 0.786.ConclusionThe machine learning model based on C2 spinous process muscle radiomics features and clinical parameters (C2-C7 Cobb angle, cSVA, T1S and C2 muscle infiltration) effectively predicts AS occurrence after unilateral laminoplasty, providing clinicians with a valuable tool for preoperative risk assessment and personalized treatment planning.

Beyond Pixels: Medical Image Quality Assessment with Implicit Neural Representations

Caner Özer, Patryk Rygiel, Bram de Wilde, İlkay Öksüz, Jelmer M. Wolterink

arxiv logopreprintAug 7 2025
Artifacts pose a significant challenge in medical imaging, impacting diagnostic accuracy and downstream analysis. While image-based approaches for detecting artifacts can be effective, they often rely on preprocessing methods that can lead to information loss and high-memory-demand medical images, thereby limiting the scalability of classification models. In this work, we propose the use of implicit neural representations (INRs) for image quality assessment. INRs provide a compact and continuous representation of medical images, naturally handling variations in resolution and image size while reducing memory overhead. We develop deep weight space networks, graph neural networks, and relational attention transformers that operate on INRs to achieve image quality assessment. Our method is evaluated on the ACDC dataset with synthetically generated artifact patterns, demonstrating its effectiveness in assessing image quality while achieving similar performance with fewer parameters.
Page 8 of 1161158 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.