3D gadolinium-enhanced high-resolution near-isotropic pancreatic imaging at 3.0-T MR using deep-learning reconstruction.
Authors
Affiliations (5)
Affiliations (5)
- Department of Medical Imaging, Saint Joseph Hospital, Paris, France. [email protected].
- Department of Medical Imaging, Rothschild Foundation Hospital, Paris, France. [email protected].
- MR Clinical Research, GE HealthCare, Buc, France.
- Department of Medical Imaging, Saint Joseph Hospital, Paris, France.
- Department of Medical Imaging, Pitié-Salpêtrière Hospital, Paris, France.
Abstract
To compare overall image quality, lesion conspicuity and detectability on 3D-T1w-GRE arterial phase high-resolution MR images with deep learning reconstruction (3D-DLR) against standard-of-care reconstruction (SOC-Recon) in patients with suspected pancreatic disease. Patients who underwent a pancreatic MR exam with a high-resolution 3D-T1w-GRE arterial phase acquisition on a 3.0-T MR system between December 2021 and June 2022 in our center were retrospectively included. A new deep learning-based reconstruction algorithm (3D-DLR) was used to additionally reconstruct arterial phase images. Two radiologists blinded to the reconstruction type assessed images for image quality, artifacts and lesion conspicuity using a Likert scale and counted the lesions. Signal-to-noise ratio and lesion contrast-to-noise ratio were calculated for each reconstruction. Quantitative data were evaluated using paired t-tests. Ordinal data such as image quality, artifacts and lesions conspicuity were analyzed using paired-Wilcoxon tests. Interobserver agreement for image quality and artifact assessment was evaluated using Cohen's kappa. Thirty-two patients (mean age 62 years ± 12, 16 female) were included. 3D-DLR significantly improved SNR for each pancreatic segment and lesion CNR compared to SOC-Recon (p < 0.01), and demonstrated significantly higher average image quality score (3.34 vs 2.68, p < 0.01). 3D DLR also significantly reduced artifacts compared to SOC-Recon (p < 0.01) for one radiologist. 3D-DLR exhibited significantly higher average lesion conspicuity (2.30 vs 1.85, p < 0.01). The sensitivity was increased with 3D-DLR compared to SOC-Recon for both reader 1 and reader 2 (1 vs 0.88 and 0.88 vs 0.83, p = 0.62 for both results). 3D-DLR images demonstrated higher overall image quality, leading to better lesion conspicuity. 3D deep learning reconstruction can be applied to gadolinium-enhanced pancreatic 3D-T1w arterial phase high-resolution images without additional acquisition time to further improve image quality and lesion conspicuity. 3D DLR has not yet been applied to pancreatic MRI high-resolution sequences. This method improves SNR, CNR, and overall 3D T1w arterial pancreatic image quality. Enhanced lesion conspicuity may improve pancreatic lesion detectability.