Back to all papers

3D gadolinium-enhanced high-resolution near-isotropic pancreatic imaging at 3.0-T MR using deep-learning reconstruction.

Authors

Guan S,Poujol J,Gouhier E,Touloupas C,Delpla A,Boulay-Coletta I,Zins M

Affiliations (5)

  • Department of Medical Imaging, Saint Joseph Hospital, Paris, France. [email protected].
  • Department of Medical Imaging, Rothschild Foundation Hospital, Paris, France. [email protected].
  • MR Clinical Research, GE HealthCare, Buc, France.
  • Department of Medical Imaging, Saint Joseph Hospital, Paris, France.
  • Department of Medical Imaging, Pitié-Salpêtrière Hospital, Paris, France.

Abstract

To compare overall image quality, lesion conspicuity and detectability on 3D-T1w-GRE arterial phase high-resolution MR images with deep learning reconstruction (3D-DLR) against standard-of-care reconstruction (SOC-Recon) in patients with suspected pancreatic disease. Patients who underwent a pancreatic MR exam with a high-resolution 3D-T1w-GRE arterial phase acquisition on a 3.0-T MR system between December 2021 and June 2022 in our center were retrospectively included. A new deep learning-based reconstruction algorithm (3D-DLR) was used to additionally reconstruct arterial phase images. Two radiologists blinded to the reconstruction type assessed images for image quality, artifacts and lesion conspicuity using a Likert scale and counted the lesions. Signal-to-noise ratio and lesion contrast-to-noise ratio were calculated for each reconstruction. Quantitative data were evaluated using paired t-tests. Ordinal data such as image quality, artifacts and lesions conspicuity were analyzed using paired-Wilcoxon tests. Interobserver agreement for image quality and artifact assessment was evaluated using Cohen's kappa. Thirty-two patients (mean age 62 years ± 12, 16 female) were included. 3D-DLR significantly improved SNR for each pancreatic segment and lesion CNR compared to SOC-Recon (p < 0.01), and demonstrated significantly higher average image quality score (3.34 vs 2.68, p < 0.01). 3D DLR also significantly reduced artifacts compared to SOC-Recon (p < 0.01) for one radiologist. 3D-DLR exhibited significantly higher average lesion conspicuity (2.30 vs 1.85, p < 0.01). The sensitivity was increased with 3D-DLR compared to SOC-Recon for both reader 1 and reader 2 (1 vs 0.88 and 0.88 vs 0.83, p = 0.62 for both results). 3D-DLR images demonstrated higher overall image quality, leading to better lesion conspicuity. 3D deep learning reconstruction can be applied to gadolinium-enhanced pancreatic 3D-T1w arterial phase high-resolution images without additional acquisition time to further improve image quality and lesion conspicuity. 3D DLR has not yet been applied to pancreatic MRI high-resolution sequences. This method improves SNR, CNR, and overall 3D T1w arterial pancreatic image quality. Enhanced lesion conspicuity may improve pancreatic lesion detectability.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.