Sort by:
Page 8 of 14134 results

TTGA U-Net: Two-stage two-stream graph attention U-Net for hepatic vessel connectivity enhancement.

Zhao Z, Li W, Ding X, Sun J, Xu LX

pubmed logopapersJun 1 2025
Accurate segmentation of hepatic vessels is pivotal for guiding preoperative planning in ablation surgery utilizing CT images. While non-contrast CT images often lack observable vessels, we focus on segmenting hepatic vessels within preoperative MR images. However, the vascular structures depicted in MR images are susceptible to noise, leading to challenges in connectivity. To address this issue, we propose a two-stage two-stream graph attention U-Net (i.e., TTGA U-Net) for hepatic vessel segmentation. Specifically, the first-stage network employs a CNN or Transformer-based architecture to preliminarily locate the vessel position, followed by an improved superpixel segmentation method to generate graph structures based on the positioning results. The second-stage network extracts graph node features through two parallel branches of a graph spatial attention network (GAT) and a graph channel attention network (GCT), employing self-attention mechanisms to balance these features. The graph pooling operation is utilized to aggregate node information. Moreover, we introduce a feature fusion module instead of skip connections to merge the two graph attention features, providing additional information to the decoder effectively. We establish a novel well-annotated high-quality MR image dataset for hepatic vessel segmentation and validate the vessel connectivity enhancement network's effectiveness on this dataset and the public dataset 3D IRCADB. Experimental results demonstrate that our TTGA U-Net outperforms state-of-the-art methods, notably enhancing vessel connectivity.

Z-SSMNet: Zonal-aware Self-supervised Mesh Network for prostate cancer detection and diagnosis with Bi-parametric MRI.

Yuan Y, Ahn E, Feng D, Khadra M, Kim J

pubmed logopapersJun 1 2025
Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa). Developing AI-based systems to identify csPCa using bpMRI can transform prostate cancer (PCa) management by improving efficiency and cost-effectiveness. However, current state-of-the-art methods using convolutional neural networks (CNNs) and Transformers are limited in learning in-plane and three-dimensional spatial information from anisotropic bpMRI. Their performances also depend on the availability of large, diverse, and well-annotated bpMRI datasets. To address these challenges, we propose the Zonal-aware Self-supervised Mesh Network (Z-SSMNet), which adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI in a balanced manner. We also propose a self-supervised learning (SSL) technique that effectively captures both intra-slice and inter-slice semantic information using large-scale unlabeled data. Furthermore, we constrain the network to focus on the zonal anatomical regions to improve the detection and diagnosis capability of csPCa. We conducted extensive experiments on the PI-CAI (Prostate Imaging - Cancer AI) dataset comprising 10000+ multi-center and multi-scanner data. Our Z-SSMNet excelled in both lesion-level detection (AP score of 0.633) and patient-level diagnosis (AUROC score of 0.881), securing the top position in the Open Development Phase of the PI-CAI challenge and maintained strong performance, achieving an AP score of 0.690 and an AUROC score of 0.909, and securing the second-place ranking in the Closed Testing Phase. These findings underscore the potential of AI-driven systems for csPCa diagnosis and management.

Evaluation of a deep learning prostate cancer detection system on biparametric MRI against radiological reading.

Debs N, Routier A, Bône A, Rohé MM

pubmed logopapersJun 1 2025
This study aims to evaluate a deep learning pipeline for detecting clinically significant prostate cancer (csPCa), defined as Gleason Grade Group (GGG) ≥ 2, using biparametric MRI (bpMRI) and compare its performance with radiological reading. The training dataset included 4381 bpMRI cases (3800 positive and 581 negative) across three continents, with 80% annotated using PI-RADS and 20% with Gleason Scores. The testing set comprised 328 cases from the PROSTATEx dataset, including 34% positive (GGG ≥ 2) and 66% negative cases. A 3D nnU-Net was trained on bpMRI for lesion detection, evaluated using histopathology-based annotations, and assessed with patient- and lesion-level metrics, along with lesion volume, and GGG. The algorithm was compared to non-expert radiologists using multi-parametric MRI (mpMRI). The model achieved an AUC of 0.83 (95% CI: 0.80, 0.87). Lesion-level sensitivity was 0.85 (95% CI: 0.82, 0.94) at 0.5 False Positives per volume (FP/volume) and 0.88 (95% CI: 0.79, 0.92) at 1 FP/volume. Average Precision was 0.55 (95% CI: 0.46, 0.64). The model showed over 0.90 sensitivity for lesions larger than 650 mm³ and exceeded 0.85 across GGGs. It had higher true positive rates (TPRs) than radiologists equivalent FP rates, achieving TPRs of 0.93 and 0.79 compared to radiologists' 0.87 and 0.68 for PI-RADS ≥ 3 and PI-RADS ≥ 4 lesions (p ≤ 0.05). The DL model showed strong performance in detecting csPCa on an independent test cohort, surpassing radiological interpretation and demonstrating AI's potential to improve diagnostic accuracy for non-expert radiologists. However, detecting small lesions remains challenging. Question Current prostate cancer detection methods often do not involve non-expert radiologists, highlighting the need for more accurate deep learning approaches using biparametric MRI. Findings Our model outperforms radiologists significantly, showing consistent performance across Gleason Grade Groups and for medium to large lesions. Clinical relevance This AI model improves prostate detection accuracy in prostate imaging, serves as a benchmark with reference performance on a public dataset, and offers public PI-RADS annotations, enhancing transparency and facilitating further research and development.

CNS-CLIP: Transforming a Neurosurgical Journal Into a Multimodal Medical Model.

Alyakin A, Kurland D, Alber DA, Sangwon KL, Li D, Tsirigos A, Leuthardt E, Kondziolka D, Oermann EK

pubmed logopapersJun 1 2025
Classical biomedical data science models are trained on a single modality and aimed at one specific task. However, the exponential increase in the size and capabilities of the foundation models inside and outside medicine shows a shift toward task-agnostic models using large-scale, often internet-based, data. Recent research into smaller foundation models trained on specific literature, such as programming textbooks, demonstrated that they can display capabilities similar to or superior to large generalist models, suggesting a potential middle ground between small task-specific and large foundation models. This study attempts to introduce a domain-specific multimodal model, Congress of Neurological Surgeons (CNS)-Contrastive Language-Image Pretraining (CLIP), developed for neurosurgical applications, leveraging data exclusively from Neurosurgery Publications. We constructed a multimodal data set of articles from Neurosurgery Publications through PDF data collection and figure-caption extraction using an artificial intelligence pipeline for quality control. Our final data set included 24 021 figure-caption pairs. We then developed a fine-tuning protocol for the OpenAI CLIP model. The model was evaluated on tasks including neurosurgical information retrieval, computed tomography imaging classification, and zero-shot ImageNet classification. CNS-CLIP demonstrated superior performance in neurosurgical information retrieval with a Top-1 accuracy of 24.56%, compared with 8.61% for the baseline. The average area under receiver operating characteristic across 6 neuroradiology tasks achieved by CNS-CLIP was 0.95, slightly superior to OpenAI's Contrastive Language-Image Pretraining at 0.94 and significantly outperforming a vanilla vision transformer at 0.62. In generalist classification, CNS-CLIP reached a Top-1 accuracy of 47.55%, a decrease from the baseline of 52.37%, demonstrating a catastrophic forgetting phenomenon. This study presents a pioneering effort in building a domain-specific multimodal model using data from a medical society publication. The results indicate that domain-specific models, while less globally versatile, can offer advantages in specialized contexts. This emphasizes the importance of using tailored data and domain-focused development in training foundation models in neurosurgery and general medicine.

Aiding Medical Diagnosis through Image Synthesis and Classification

Kanishk Choudhary

arxiv logopreprintJun 1 2025
Medical professionals, especially those in training, often depend on visual reference materials to support an accurate diagnosis and develop pattern recognition skills. However, existing resources may lack the diversity and accessibility needed for broad and effective clinical learning. This paper presents a system designed to generate realistic medical images from textual descriptions and validate their accuracy through a classification model. A pretrained stable diffusion model was fine-tuned using Low-Rank Adaptation (LoRA) on the PathMNIST dataset, consisting of nine colorectal histopathology tissue types. The generative model was trained multiple times using different training parameter configurations, guided by domain-specific prompts to capture meaningful features. To ensure quality control, a ResNet-18 classification model was trained on the same dataset, achieving 99.76% accuracy in detecting the correct label of a colorectal histopathological medical image. Generated images were then filtered using the trained classifier and an iterative process, where inaccurate outputs were discarded and regenerated until they were correctly classified. The highest performing version of the generative model from experimentation achieved an F1 score of 0.6727, with precision and recall scores of 0.6817 and 0.7111, respectively. Some types of tissue, such as adipose tissue and lymphocytes, reached perfect classification scores, while others proved more challenging due to structural complexity. The self-validating approach created demonstrates a reliable method for synthesizing domain-specific medical images because of high accuracy in both the generation and classification portions of the system, with potential applications in both diagnostic support and clinical education. Future work includes improving prompt-specific accuracy and extending the system to other areas of medical imaging.

Mexican dataset of digital mammograms (MEXBreast) with suspicious clusters of microcalcifications.

Lozoya RSL, Barragán KN, Domínguez HJO, Azuela JHS, Sánchez VGC, Villegas OOV

pubmed logopapersJun 1 2025
Breast cancer is one of the most prevalent cancers affecting women worldwide. Early detection and treatment are crucial in significantly reducing mortality rates Microcalcifications (MCs) are of particular importance among the various breast lesions. These tiny calcium deposits within breast tissue are present in approximately 30% of malignant tumors and can serve as critical indirect indicators of early-stage breast cancer. Three or more MCs within an area of 1 cm² are considered a Microcalcification Cluster (MCC) and assigned a BI-RADS category 4, indicating a suspicion of malignancy. Mammography is the most used technique for breast cancer detection. Approximately one in two mammograms showing MCCs is confirmed as cancerous through biopsy. MCCs are challenging to detect, even for experienced radiologists, underscoring the need for computer-aided detection tools such as Convolutional Neural Networks (CNNs). CNNs require large amounts of domain-specific data with consistent resolutions for effective training. However, most publicly available mammogram datasets either lack resolution information or are compiled from heterogeneous sources. Additionally, MCCs are often either unlabeled or sparsely represented in these datasets, limiting their utility for training CNNs. In this dataset, we present the MEXBreast, an annotated MCCs Mexican digital mammogram database, containing images from resolutions of 50, 70, and 100 microns. MEXBreast aims to support the training, validation, and testing of deep learning CNNs.

Deep Learning in Digital Breast Tomosynthesis: Current Status, Challenges, and Future Trends.

Wang R, Chen F, Chen H, Lin C, Shuai J, Wu Y, Ma L, Hu X, Wu M, Wang J, Zhao Q, Shuai J, Pan J

pubmed logopapersJun 1 2025
The high-resolution three-dimensional (3D) images generated with digital breast tomosynthesis (DBT) in the screening of breast cancer offer new possibilities for early disease diagnosis. Early detection is especially important as the incidence of breast cancer increases. However, DBT also presents challenges in terms of poorer results for dense breasts, increased false positive rates, slightly higher radiation doses, and increased reading times. Deep learning (DL) has been shown to effectively increase the processing efficiency and diagnostic accuracy of DBT images. This article reviews the application and outlook of DL in DBT-based breast cancer screening. First, the fundamentals and challenges of DBT technology are introduced. The applications of DL in DBT are then grouped into three categories: diagnostic classification of breast diseases, lesion segmentation and detection, and medical image generation. Additionally, the current public databases for mammography are summarized in detail. Finally, this paper analyzes the main challenges in the application of DL techniques in DBT, such as the lack of public datasets and model training issues, and proposes possible directions for future research, including large language models, multisource domain transfer, and data augmentation, to encourage innovative applications of DL in medical imaging.

Physician-level classification performance across multiple imaging domains with a diagnostic medical foundation model and a large dataset of annotated medical images

Thieme, A. H., Miri, T., Marra, A. R., Kobayashi, T., Rodriguez-Nava, G., Li, Y., Barba, T., Er, A. G., Benzler, J., Gertler, M., Riechers, M., Hinze, C., Zheng, Y., Pelz, K., Nagaraj, D., Chen, A., Loeser, A., Ruehle, A., Zamboglou, C., Alyahya, L., Uhlig, M., Machiraju, G., Weimann, K., Lippert, C., Conrad, T., Ma, J., Novoa, R., Moor, M., Hernandez-Boussard, T., Alawad, M., Salinas, J. L., Mittermaier, M., Gevaert, O.

medrxiv logopreprintMay 31 2025
A diagnostic medical foundation model (MedFM) is an artificial intelligence (AI) system engineered to accurately determine diagnoses across various medical imaging modalities and specialties. To train MedFM, we created the PubMed Central Medical Images Dataset (PMCMID), the largest annotated medical image dataset to date, comprising 16,126,659 images from 3,021,780 medical publications. Using AI- and ontology-based methods, we identified 4,482,237 medical images (e.g., clinical photos, X-rays, ultrasounds) and generated comprehensive annotations. To optimize MedFMs performance and assess biases, 13,266 images were manually annotated to establish a multimodal benchmark. MedFM achieved physician-level performance in diagnosis tasks spanning radiology, dermatology, and infectious diseases without requiring specific training. Additionally, we developed the Image2Paper app, allowing clinicians to upload medical images and retrieve relevant literature. The correct diagnoses appeared within the top ten results in 88.4% and at least one relevant differential diagnosis in 93.0%. MedFM and PMCMID were made publicly available. FundingResearch reported here was partially supported by the National Cancer Institute (NCI) (R01 CA260271), the Saudi Company for Artificial Intelligence (SCAI) Authority, and the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under the project DAKI-FWS (01MK21009E). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training

Wei Dai, Peilin Chen, Chanakya Ekbote, Paul Pu Liang

arxiv logopreprintMay 31 2025
Clinical decision-making routinely demands reasoning over heterogeneous data, yet existing multimodal language models (MLLMs) remain largely vision-centric and fail to generalize across clinical specialties. To bridge this gap, we introduce QoQ-Med-7B/32B, the first open generalist clinical foundation model that jointly reasons across medical images, time-series signals, and text reports. QoQ-Med is trained with Domain-aware Relative Policy Optimization (DRPO), a novel reinforcement-learning objective that hierarchically scales normalized rewards according to domain rarity and modality difficulty, mitigating performance imbalance caused by skewed clinical data distributions. Trained on 2.61 million instruction tuning pairs spanning 9 clinical domains, we show that DRPO training boosts diagnostic performance by 43% in macro-F1 on average across all visual domains as compared to other critic-free training methods like GRPO. Furthermore, with QoQ-Med trained on intensive segmentation data, it is able to highlight salient regions related to the diagnosis, with an IoU 10x higher than open models while reaching the performance of OpenAI o4-mini. To foster reproducibility and downstream research, we release (i) the full model weights, (ii) the modular training pipeline, and (iii) all intermediate reasoning traces at https://github.com/DDVD233/QoQ_Med.

A European Multi-Center Breast Cancer MRI Dataset

Gustav Müller-Franzes, Lorena Escudero Sánchez, Nicholas Payne, Alexandra Athanasiou, Michael Kalogeropoulos, Aitor Lopez, Alfredo Miguel Soro Busto, Julia Camps Herrero, Nika Rasoolzadeh, Tianyu Zhang, Ritse Mann, Debora Jutz, Maike Bode, Christiane Kuhl, Wouter Veldhuis, Oliver Lester Saldanha, JieFu Zhu, Jakob Nikolas Kather, Daniel Truhn, Fiona J. Gilbert

arxiv logopreprintMay 31 2025
Detecting breast cancer early is of the utmost importance to effectively treat the millions of women afflicted by breast cancer worldwide every year. Although mammography is the primary imaging modality for screening breast cancer, there is an increasing interest in adding magnetic resonance imaging (MRI) to screening programmes, particularly for women at high risk. Recent guidelines by the European Society of Breast Imaging (EUSOBI) recommended breast MRI as a supplemental screening tool for women with dense breast tissue. However, acquiring and reading MRI scans requires significantly more time from expert radiologists. This highlights the need to develop new automated methods to detect cancer accurately using MRI and Artificial Intelligence (AI), which have the potential to support radiologists in breast MRI interpretation and classification and help detect cancer earlier. For this reason, the ODELIA consortium has made this multi-centre dataset publicly available to assist in developing AI tools for the detection of breast cancer on MRI.
Page 8 of 14134 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.