Sort by:
Page 79 of 1341332 results

Interstitial-guided automatic clinical tumor volume segmentation network for cervical cancer brachytherapy.

Tan S, He J, Cui M, Gao Y, Sun D, Xie Y, Cai J, Zaki N, Qin W

pubmed logopapersJul 1 2025
Automatic clinical tumor volume (CTV) delineation is pivotal to improving outcomes for interstitial brachytherapy cervical cancer. However, the prominent differences in gray values due to the interstitial needles bring great challenges on deep learning-based segmentation model. In this study, we proposed a novel interstitial-guided segmentation network termed advance reverse guided network (ARGNet) for cervical tumor segmentation with interstitial brachytherapy. Firstly, the location information of interstitial needles was integrated into the deep learning framework via multi-task by a cross-stitch way to share encoder feature learning. Secondly, a spatial reverse attention mechanism is introduced to mitigate the distraction characteristic of needles on tumor segmentation. Furthermore, an uncertainty area module is embedded between the skip connections and the encoder of the tumor segmentation task, which is to enhance the model's capability in discerning ambiguous boundaries between the tumor and the surrounding tissue. Comprehensive experiments were conducted retrospectively on 191 CT scans under multi-course interstitial brachytherapy. The experiment results demonstrated that the characteristics of interstitial needles play a role in enhancing the segmentation, achieving the state-of-the-art performance, which is anticipated to be beneficial in radiotherapy planning.

SpineMamba: Enhancing 3D spinal segmentation in clinical imaging through residual visual Mamba layers and shape priors.

Zhang Z, Liu T, Fan G, Li N, Li B, Pu Y, Feng Q, Zhou S

pubmed logopapersJul 1 2025
Accurate segmentation of three-dimensional (3D) clinical medical images is critical for the diagnosis and treatment of spinal diseases. However, the complexity of spinal anatomy and the inherent uncertainties of current imaging technologies pose significant challenges for the semantic segmentation of spinal images. Although convolutional neural networks (CNNs) and Transformer-based models have achieved remarkable progress in spinal segmentation, their limitations in modeling long-range dependencies hinder further improvements in segmentation accuracy. To address these challenges, we propose a novel framework, SpineMamba, which incorporates a residual visual Mamba layer capable of effectively capturing and modeling the deep semantic features and long-range spatial dependencies in 3D spinal data. To further enhance the structural semantic understanding of the vertebrae, we also propose a novel spinal shape prior module that captures specific anatomical information about the spine from medical images, significantly enhancing the model's ability to extract structural semantic information of the vertebrae. Extensive comparative and ablation experiments across three datasets demonstrate that SpineMamba outperforms existing state-of-the-art models. On two computed tomography (CT) datasets, the average Dice similarity coefficients achieved are 94.40±4% and 88.28±3%, respectively, while on a magnetic resonance (MR) dataset, the model achieves a Dice score of 86.95±10%. Notably, SpineMamba surpasses the widely recognized nnU-Net in segmentation accuracy, with a maximum improvement of 3.63 percentage points. These results highlight the precision, robustness, and exceptional generalization capability of SpineMamba.

Optimizing imaging modalities for sarcoma subtypes in radiation therapy: State of the art.

Beddok A, Kaur H, Khurana S, Dercle L, El Ayachi R, Jouglar E, Mammar H, Mahe M, Najem E, Rozenblum L, Thariat J, El Fakhri G, Helfre S

pubmed logopapersJul 1 2025
The choice of imaging modalities is essential in sarcoma management, as different techniques provide complementary information depending on tumor subtype and anatomical location. This narrative review examines the role of imaging in sarcoma characterization and treatment planning, particularly in the context of radiation therapy (RT). Magnetic resonance imaging (MRI) provides superior soft tissue contrast, enabling detailed assessment of tumor extent and peritumoral involvement. Computed tomography (CT) is particularly valuable for detecting osseous involvement, periosteal reactions, and calcifications, complementing MRI in sarcomas involving bone or calcified lesions. The combination of MRI and CT enhances tumor delineation, particularly for complex sites such as retroperitoneal and uterine sarcomas, where spatial relationships with adjacent organs are critical. In vascularized sarcomas, such as alveolar soft-part sarcomas, the integration of MRI with CT or MR angiography facilitates accurate mapping of tumor margins. Positron emission tomography with [18 F]-fluorodeoxyglucose ([18 F]-FDG PET) provides functional insights, identifying metabolically active regions within tumors to guide dose escalation. Although its role in routine staging is limited, [18 F]-FDG PET and emerging PET tracers offer promise for refining RT planning. Advances in artificial intelligence further enhance imaging precision, enabling more accurate contouring and treatment optimization. This review highlights how the integration of imaging modalities, tailored to specific sarcoma subtypes, supports precise RT delivery while minimizing damage to surrounding tissues. These strategies underline the importance of multidisciplinary approaches in improving sarcoma management and outcomes through multi-image-based RT planning.

LUNETR: Language-Infused UNETR for precise pancreatic tumor segmentation in 3D medical image.

Shi Z, Zhang R, Wei X, Yu C, Xie H, Hu Z, Chen X, Zhang Y, Xie B, Luo Z, Peng W, Xie X, Li F, Long X, Li L, Hu L

pubmed logopapersJul 1 2025
The identification of early micro-lesions and adjacent blood vessels in CT scans plays a pivotal role in the clinical diagnosis of pancreatic cancer, considering its aggressive nature and high fatality rate. Despite the widespread application of deep learning methods for this task, several challenges persist: (1) the complex background environment in abdominal CT scans complicates the accurate localization of potential micro-tumors; (2) the subtle contrast between micro-lesions within pancreatic tissue and the surrounding tissues makes it challenging for models to capture these features accurately; and (3) tumors that invade adjacent blood vessels pose significant barriers to surgical procedures. To address these challenges, we propose LUNETR (Language-Infused UNETR), an advanced multimodal encoder model that combines textual and image information for precise medical image segmentation. The integration of an autoencoding language model with cross-attention enabling our model to effectively leverage semantic associations between textual and image data, thereby facilitating precise localization of potential pancreatic micro-tumors. Additionally, we designed a Multi-scale Aggregation Attention (MSAA) module to comprehensively capture both spatial and channel characteristics of global multi-scale image data, enhancing the model's capacity to extract features from micro-lesions embedded within pancreatic tissue. Furthermore, in order to facilitate precise segmentation of pancreatic tumors and nearby blood vessels and address the scarcity of multimodal medical datasets, we collaborated with Zhuzhou Central Hospital to construct a multimodal dataset comprising CT images and corresponding pathology reports from 135 pancreatic cancer patients. Our experimental results surpass current state-of-the-art models, with the incorporation of the semantic encoder improving the average Dice score for pancreatic tumor segmentation by 2.23 %. For the Medical Segmentation Decathlon (MSD) liver and lung cancer datasets, our model achieved an average Dice score improvement of 4.31 % and 3.67 %, respectively, demonstrating the efficacy of the LUNETR.

Worldwide research trends on artificial intelligence in head and neck cancer: a bibliometric analysis.

Silvestre-Barbosa Y, Castro VT, Di Carvalho Melo L, Reis PED, Leite AF, Ferreira EB, Guerra ENS

pubmed logopapersJul 1 2025
This bibliometric analysis aims to explore scientific data on Artificial Intelligence (AI) and Head and Neck Cancer (HNC). AI-related HNC articles from the Web of Science Core Collection were searched. VosViewer and Biblioshiny/Bibiometrix for R Studio were used for data synthesis. This analysis covered key characteristics such as sources, authors, affiliations, countries, citations and top cited articles, keyword analysis, and trending topics. A total of 1,019 papers from 1995 to 2024 were included. Among them, 71.6% were original research articles, 7.6% were reviews, and 20.8% took other forms. The fifty most cited documents highlighted radiology as the most explored specialty, with an emphasis on deep learning models for segmentation. The publications have been increasing, with an annual growth rate of 94.4% after 2016. Among the 20 most productive countries, 14 are high-income economies. The keywords of strong citation revealed 2 main clusters: radiomics and radiotherapy. The most frequently keywords include machine learning, deep learning, artificial intelligence, and head and neck cancer, with recent emphasis on diagnosis, survival prediction, and histopathology. There has been an increase in the use of AI in HNC research since 2016 and indicated a notable disparity in publication quantity between high-income and low/middle-income countries. Future research should prioritize clinical validation and standardization to facilitate the integration of AI in HNC management, particularly in underrepresented regions.

Uncertainty-aware deep learning for segmentation of primary tumor and pathologic lymph nodes in oropharyngeal cancer: Insights from a multi-center cohort.

De Biase A, Sijtsema NM, van Dijk LV, Steenbakkers R, Langendijk JA, van Ooijen P

pubmed logopapersJul 1 2025
Information on deep learning (DL) tumor segmentation accuracy on a voxel and a structure level is essential for clinical introduction. In a previous study, a DL model was developed for oropharyngeal cancer (OPC) primary tumor (PT) segmentation in PET/CT images and voxel-level predicted probabilities (TPM) quantifying model certainty were introduced. This study extended the network to simultaneously generate TPMs for PT and pathologic lymph nodes (PL) and explored whether structure-level uncertainty in TPMs predicts segmentation model accuracy in an independent external cohort. We retrospectively gathered PET/CT images and manual delineations of gross tumor volume of the PT (GTVp) and PL (GTVln) of 407 OPC patients treated with (chemo)radiation in our institute. The HECKTOR 2022 challenge dataset served as external test set. The pre-existing architecture was modified for multi-label segmentation. Multiple models were trained, and the non-binarized ensemble average of TPMs was considered per patient. Segmentation accuracy was quantified by surface and aggregate DSC, model uncertainty by coefficient of variation (CV) of multiple predictions. Predicted GTVp and GTVln segmentations in the external test achieved 0.75 and 0.70 aggregate DSC. Patient-specific CV and surface DSC showed a significant correlation for both structures (-0.54 and -0.66 for GTVp and GTVln) in the external set, indicating significant calibration. Significant accuracy versus uncertainty calibration was achieved for TPMs in both internal and external test sets, indicating the potential use of quantified uncertainty from TPMs to identify cases with lower GTVp and GTVln segmentation accuracy, independently of the dataset.

Efficient Cerebral Infarction Segmentation Using U-Net and U-Net3 + Models.

Yuce E, Sahin ME, Ulutas H, Erkoç MF

pubmed logopapersJun 30 2025
Cerebral infarction remains a leading cause of mortality and long-term disability globally, underscoring the critical importance of early diagnosis and timely intervention to enhance patient outcomes. This study introduces a novel approach to cerebral infarction segmentation using a novel dataset comprising MRI scans of 110 patients, retrospectively collected from Yozgat Bozok University Research Hospital. Two convolutional neural network architectures, the basic U-Net and the advanced U-Net3 + , are employed to segment infarction regions with high precision. Ground-truth annotations are generated under the supervision of an experienced radiologist, and data augmentation techniques are applied to address dataset limitations, resulting in 6732 balanced images for training, validation, and testing. Performance evaluation is conducted using metrics such as the dice score, Intersection over Union (IoU), pixel accuracy, and specificity. The basic U-Net achieved superior performance with a dice score of 0.8947, a mean IoU of 0.8798, a pixel accuracy of 0.9963, and a specificity of 0.9984, outperforming U-Net3 + despite its simpler architecture. U-Net3 + , with its complex structure and advanced features, delivered competitive results, highlighting the potential trade-off between model complexity and performance in medical imaging tasks. This study underscores the significance of leveraging deep learning for precise and efficient segmentation of cerebral infarction. The results demonstrate the capability of CNN-based architectures to support medical decision-making, offering a promising pathway for advancing stroke diagnosis and treatment planning.

MedSAM-CA: A CNN-Augmented ViT with Attention-Enhanced Multi-Scale Fusion for Medical Image Segmentation

Peiting Tian, Xi Chen, Haixia Bi, Fan Li

arxiv logopreprintJun 30 2025
Medical image segmentation plays a crucial role in clinical diagnosis and treatment planning, where accurate boundary delineation is essential for precise lesion localization, organ identification, and quantitative assessment. In recent years, deep learning-based methods have significantly advanced segmentation accuracy. However, two major challenges remain. First, the performance of these methods heavily relies on large-scale annotated datasets, which are often difficult to obtain in medical scenarios due to privacy concerns and high annotation costs. Second, clinically challenging scenarios, such as low contrast in certain imaging modalities and blurry lesion boundaries caused by malignancy, still pose obstacles to precise segmentation. To address these challenges, we propose MedSAM-CA, an architecture-level fine-tuning approach that mitigates reliance on extensive manual annotations by adapting the pretrained foundation model, Medical Segment Anything (MedSAM). MedSAM-CA introduces two key components: the Convolutional Attention-Enhanced Boundary Refinement Network (CBR-Net) and the Attention-Enhanced Feature Fusion Block (Atte-FFB). CBR-Net operates in parallel with the MedSAM encoder to recover boundary information potentially overlooked by long-range attention mechanisms, leveraging hierarchical convolutional processing. Atte-FFB, embedded in the MedSAM decoder, fuses multi-level fine-grained features from skip connections in CBR-Net with global representations upsampled within the decoder to enhance boundary delineation accuracy. Experiments on publicly available datasets covering dermoscopy, CT, and MRI imaging modalities validate the effectiveness of MedSAM-CA. On dermoscopy dataset, MedSAM-CA achieves 94.43% Dice with only 2% of full training data, reaching 97.25% of full-data training performance, demonstrating strong effectiveness in low-resource clinical settings.

Evaluation of Cone-Beam Computed Tomography Images with Artificial Intelligence.

Arı T, Bayrakdar IS, Çelik Ö, Bilgir E, Kuran A, Orhan K

pubmed logopapersJun 30 2025
This study aims to evaluate the success of artificial intelligence models developed using convolutional neural network-based algorithms on CBCT images. Labeling was done by segmentation method for 15 different conditions including caries, restorative filling material, root-canal filling material, dental implant, implant supported crown, crown, pontic, impacted tooth, supernumerary tooth, residual root, osteosclerotic area, periapical lesion, radiolucent jaw lesion, radiopaque jaw lesion, and mixed appearing jaw lesion on the data set consisting of 300 CBCT images. In model development, the Mask R-CNN architecture and ResNet 101 model were used as a transfer learning method. The success metrics of the model were calculated with the confusion matrix method. When the F1 scores of the developed models were evaluated, the most successful dental implant was found to be 1, and the lowest F1 score was found to be a mixed appearing jaw lesion. F1 scores were respectively dental implant, root canal filling material, implant supported crown, restorative filling material, radiopaque jaw lesion, crown, pontic, impacted tooth, caries, residual tooth root, radiolucent jaw lesion, osteosclerotic area, periapical lesion, supernumerary tooth, for mixed appearing jaw lesion; 1 is 0.99, 0.98, 0.98, 0.97, 0.96, 0.96, 0.95, 0.94, 0.94, 0.94, 0.90, 0.90, 0.87, and 0.8. Interpreting CBCT images is a time-consuming process and requires expertise. In the era of digital transformation, artificial intelligence-based systems that can automatically evaluate images and convert them into report format as a decision support mechanism will contribute to reducing the workload of physicians, thus increasing the time allocated to the interpretation of pathologies.

Deep learning for automated, motion-resolved tumor segmentation in radiotherapy.

Sarkar S, Teo PT, Abazeed ME

pubmed logopapersJun 30 2025
Accurate tumor delineation is foundational to radiotherapy. In the era of deep learning, the automation of this labor-intensive and variation-prone process is increasingly tractable. We developed a deep neural network model to segment gross tumor volumes (GTVs) in the lung and propagate them across 4D CT images to generate an internal target volume (ITV), capturing tumor motion during respiration. Using a multicenter cohort-based registry from 9 clinics across 2 health systems, we trained a 3D UNet model (iSeg) on pre-treatment CT images and corresponding GTV masks (n = 739, 5-fold cross-validation) and validated it on two independent cohorts (n = 161; n = 102). The internal cohort achieved a median Dice (DSC) of 0.73 [IQR: 0.62-0.80], with comparable performance in external cohorts (DSC = 0.70 [0.52-0.78] and 0.71 [0.59-79]), indicating multi-site validation. iSeg matched human inter-observer variability and was robust to image quality and tumor motion (DSC = 0.77 [0.68-0.86]). Machine-generated ITVs were significantly smaller than physician delineated contours (p < 0.0001), indicating more precise delineation. Notably, higher false positive voxel rate (regions segmented by the machine but not the human) were associated with increased local failure (HR: 1.01 per voxel, p = 0.03), suggesting the clinical relevance of these discordant regions. These results mark a leap in automated target volume segmentation and suggest that machine delineation can enhance the accuracy, reproducibility, and efficiency of this core task in radiotherapy.
Page 79 of 1341332 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.