Sort by:
Page 79 of 1421416 results

2.5D deep learning radiomics and clinical data for predicting occult lymph node metastasis in lung adenocarcinoma.

Huang X, Huang X, Wang K, Bai H, Lu X, Jin G

pubmed logopapersJul 1 2025
Occult lymph node metastasis (OLNM) refers to lymph node involvement that remains undetectable by conventional imaging techniques, posing a significant challenge in the accurate staging of lung adenocarcinoma. This study aims to investigate the potential of combining 2.5D deep learning radiomics with clinical data to predict OLNM in lung adenocarcinoma. Retrospective contrast-enhanced CT images were collected from 1,099 patients diagnosed with lung adenocarcinoma across two centers. Multivariable analysis was performed to identify independent clinical risk factors for constructing clinical signatures. Radiomics features were extracted from the enhanced CT images to develop radiomics signatures. A 2.5D deep learning approach was used to extract deep learning features from the images, which were then aggregated using multi-instance learning (MIL) to construct MIL signatures. Deep learning radiomics (DLRad) signatures were developed by integrating the deep learning features with radiomic features. These were subsequently combined with clinical features to form the combined signatures. The performance of the resulting signatures was evaluated using the area under the curve (AUC). The clinical model achieved AUCs of 0.903, 0.866, and 0.785 in the training, validation, and external test cohorts The radiomics model yielded AUCs of 0.865, 0.892, and 0.796 in the training, validation, and external test cohorts. The MIL model demonstrated AUCs of 0.903, 0.900, and 0.852 in the training, validation, and external test cohorts, respectively. The DLRad model showed AUCs of 0.910, 0.908, and 0.875 in the training, validation, and external test cohorts. Notably, the combined model consistently outperformed all other models, achieving AUCs of 0.940, 0.923, and 0.898 in the training, validation, and external test cohorts. The integration of 2.5D deep learning radiomics with clinical data demonstrates strong capability for OLNM in lung adenocarcinoma, potentially aiding clinicians in developing more personalized treatment strategies.

A Novel Visual Model for Predicting Prognosis of Resected Hepatoblastoma: A Multicenter Study.

He Y, An C, Dong K, Lyu Z, Qin S, Tan K, Hao X, Zhu C, Xiu W, Hu B, Xia N, Wang C, Dong Q

pubmed logopapersJul 1 2025
This study aimed to evaluate the application of a contrast-enhanced CT-based visual model in predicting postoperative prognosis in patients with hepatoblastoma (HB). We analyzed data from 224 patients across three centers (178 in the training cohort, 46 in the validation cohort). Visual features were extracted from contrast-enhanced CT images, and key features, along with clinicopathological data, were identified using LASSO Cox regression. Visual (DINOv2_score) and clinical (Clinical_score) models were developed, and a combined model integrating DINOv2_score and clinical risk factors was constructed. Nomograms were created for personalized risk assessment, with calibration curves and decision curve analysis (DCA) used to evaluate model performance. The DINOv2_score was recognized as a key prognostic indicator for HB. In both the training and validation cohorts, the combined model demonstrated superior performance in predicting disease-free survival (DFS) [C-index (95% CI): 0.886 (0.879-0.895) and 0.873 (0.837-0.909), respectively] and overall survival (OS) [C-index (95% CI): 0.887 (0.877-0.897) and 0.882 (0.858-0.906), respectively]. Calibration curves showed strong alignment between predicted and observed outcomes, while DCA demonstrated that the combined model provided greater clinical net benefit than the clinical or visual models alone across a range of threshold probabilities. The contrast-enhanced CT-based visual model serves as an effective tool for predicting postoperative prognosis in HB patients. The combined model, integrating the DINOv2_score and clinical risk factors, demonstrated superior performance in survival prediction, offering more precise guidance for personalized treatment strategies.

Deep Learning and Radiomics Discrimination of Coronary Chronic Total Occlusion and Subtotal Occlusion using CTA.

Zhou Z, Bo K, Gao Y, Zhang W, Zhang H, Chen Y, Chen Y, Wang H, Zhang N, Huang Y, Mao X, Gao Z, Zhang H, Xu L

pubmed logopapersJul 1 2025
Coronary chronic total occlusion (CTO) and subtotal occlusion (STO) pose diagnostic challenges, differing in treatment strategies. Artificial intelligence and radiomics are promising tools for accurate discrimination. This study aimed to develop deep learning (DL) and radiomics models using coronary computed tomography angiography (CCTA) to differentiate CTO from STO lesions and compare their performance with that of the conventional method. CTO and STO were identified retrospectively from a tertiary hospital and served as training and validation sets for developing and validating the DL and radiomics models to distinguish CTO from STO. An external test cohort was recruited from two additional tertiary hospitals with identical eligibility criteria. All participants underwent CCTA within 1 month before invasive coronary angiography. A total of 581 participants (mean age, 50 years ± 11 [SD]; 474 [81.6%] men) with 600 lesions were enrolled, including 403 CTO and 197 STO lesions. The DL and radiomics models exhibited better discrimination performance than the conventional method, with areas under the curve of 0.908 and 0.860, respectively, vs. 0.794 in the validation set (all p<0.05), and 0.893 and 0.827, respectively, vs. 0.746 in the external test set (all p<0.05). The proposed CCTA-based DL and radiomics models achieved efficient and accurate discrimination of coronary CTO and STO.

Preoperative Prediction of STAS Risk in Primary Lung Adenocarcinoma Using Machine Learning: An Interpretable Model with SHAP Analysis.

Wang P, Cui J, Du H, Qian Z, Zhan H, Zhang H, Ye W, Meng W, Bai R

pubmed logopapersJul 1 2025
Accurate preoperative prediction of spread through air spaces (STAS) in primary lung adenocarcinoma (LUAD) is critical for optimizing surgical strategies and improving patient outcomes. To develop a machine learning (ML) based model to predict STAS using preoperative CT imaging features and clinicopathological data, while enhancing interpretability through shapley additive explanations (SHAP) analysis. This multicenter retrospective study included 1237 patients with pathologically confirmed primary LUAD from three hospitals. Patients from Center 1 (n=932) were divided into a training set (n=652) and an internal test set (n=280). Patients from Centers 2 (n=165) and 3 (n=140) formed external validation sets. CT imaging features and clinical variables were selected using Boruta and least absolute shrinkage and selection operator regression. Seven ML models were developed and evaluated using five-fold cross-validation. Performance was assessed using F1 score, recall, precision, specificity, sensitivity, and area under the receiver operating characteristic curve (AUC). The Extreme Gradient Boosting (XGB) model achieved AUCs of 0.973 (training set), 0.862 (internal test set), and 0.842/0.810 (external validation sets). SHAP analysis identified nodule type, carcinoembryonic antigen, maximum nodule diameter, and lobulated sign as key features for predicting STAS. Logistic regression analysis confirmed these as independent risk factors. The XGB model demonstrated high predictive accuracy and interpretability for STAS. By integrating widely available clinical and imaging features, this model offers a practical and effective tool for preoperative risk stratification, supporting personalized surgical planning in primary LUAD management.

Exploring the Incremental Value of Aorta Enhancement Normalization Method in Evaluating Renal Cell Carcinoma Histological Subtypes: A Multi-center Large Cohort Study.

Huang Z, Wang L, Mei H, Liu J, Zeng H, Liu W, Yuan H, Wu K, Liu H

pubmed logopapersJul 1 2025
The classification of renal cell carcinoma (RCC) histological subtypes plays a crucial role in clinical diagnosis. However, traditional image normalization methods often struggle with discrepancies arising from differences in imaging parameters, scanning devices, and multi-center data, which can impact model robustness and generalizability. This study included 1628 patients with pathologically confirmed RCC who underwent nephrectomy across eight cohorts. These were divided into a training set, a validation set, external test dataset 1, and external test dataset 2. We proposed an "Aortic Enhancement Normalization" (AEN) method based on the lesion-to-aorta enhancement ratio and developed an automated lesion segmentation model along with a multi-scale CT feature extractor. Several machine learning algorithms, including Random Forest, LightGBM, CatBoost, and XGBoost, were used to build classification models and compare the performance of the AEN and traditional approaches for evaluating histological subtypes (clear cell renal cell carcinoma [ccRCC] vs. non-ccRCC). Additionally, we employed SHAP analysis to further enhance the transparency and interpretability of the model's decisions. The experimental results demonstrated that the AEN method outperformed the traditional normalization method across all four algorithms. Specifically, in the XGBoost model, the AEN method significantly improved performance in both internal and external validation sets, achieving AUROC values of 0.89, 0.81, and 0.80, highlighting its superior performance and strong generalizability. SHAP analysis revealed that multi-scale CT features played a critical role in the model's decision-making process. The proposed AEN method effectively reduces the impact of imaging parameter differences, significantly improving the robustness and generalizability of histological subtype (ccRCC vs. non-ccRCC) models. This approach provides new insights for multi-center data analysis and demonstrates promising clinical applicability.

Interpretable Machine Learning Radiomics Model Predicts 5-year Recurrence-Free Survival in Non-metastatic Clear Cell Renal Cell Carcinoma: A Multicenter and Retrospective Cohort Study.

Zhang J, Huang W, Li Y, Zhang X, Chen Y, Chen S, Ming Q, Jiang Q, Xv Y

pubmed logopapersJul 1 2025
To develop and validate a computed tomography (CT) radiomics-based interpretable machine learning (ML) model for predicting 5-year recurrence-free survival (RFS) in non-metastatic clear cell renal cell carcinoma (ccRCC). 559 patients with non-metastatic ccRCCs were retrospectively enrolled from eight independent institutes between March 2013 and January 2019, and were assigned to the primary set (n=271), external test set 1 (n=216), and external test set 2 (n=72). 1316 Radiomics features were extracted via "Pyradiomics." The least absolute shrinkage and selection operator algorithm was used for feature selection and Rad-Score construction. Patients were stratified into low and high 5-year recurrence risk groups based on Rad-Score, followed by Kaplan-Meier analyses. Five ML models integrating Rad-Score and clinicopathological risk factors were compared. Models' performances were evaluated via the discrimination, calibration, and decision curve analysis. The most robust ML model was interpreted using the SHapley Additive exPlanation (SHAP) method. 13 radiomic features were filtered to produce the Rad-Score, which predicted 5-year RFS with area under the receiver operating characteristic curve (AUCs) of 0.734-0.836. Kaplan-Meier analysis showed significant survival differences based on Rad-Score (all Log-Rank p values <0.05). The random forest model outperformed other models, obtaining AUCs of 0.826 [95% confidential interval (CI): 0.766-0.879] and 0.799 (95% CI: 0.670-0.899) in the external test set 1 and 2, respectively. The SHAP analysis suggested positive associations between contributing factors and 5-year RFS status in non-metastatic ccRCC. CT radiomics-based interpretable ML model can effectively predict 5-year RFS in non-metastatic ccRCC patients, distinguishing between low and high 5-year recurrence risks.

Machine-Learning-Based Computed Tomography Radiomics Regression Model for Predicting Pulmonary Function.

Wang W, Sun Y, Wu R, Jin L, Shi Z, Tuersun B, Yang S, Li M

pubmed logopapersJul 1 2025
Chest computed tomography (CT) radiomics can be utilized for categorical predictions; however, models predicting pulmonary function indices directly are lacking. This study aimed to develop machine-learning-based regression models to predict pulmonary function using chest CT radiomics. This retrospective study enrolled patients who underwent chest CT and pulmonary function tests between January 2018 and April 2024. Machine-learning regression models were constructed and validated to predict pulmonary function indices, including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV<sub>1</sub>). The models incorporated radiomics of the whole lung and clinical features. Model performance was evaluated using mean absolute error, mean squared error, root mean squared error, concordance correlation coefficient (CCC), and R-squared (R<sup>2</sup>) value and compared to spirometry results. Individual explanations of the models' decisions were analyzed using an explainable approach based on SHapley Additive exPlanations. In total, 1585 cases were included in the analysis, with 102 of them being external cases. Across the training, validation, test, and external test sets, the combined model consistently achieved the best performance in the regression task for predicting FVC (e.g. external test set: CCC, 0.745 [95% confidence interval 0.642-0.818]; R<sup>2</sup>, 0.601 [0.453-0.707]) and FEV<sub>1</sub> (e.g. external test set: CCC, 0.744 [0.633-0.824]; R<sup>2</sup>, 0.527 [0.298-0.675]). Age, sex, and emphysema were important factors for both FVC and FEV<sub>1</sub>, while distinct radiomics features contributed to each. Whole-lung-based radiomics features can be used to construct regression models to improve pulmonary function prediction.

Artificial Intelligence in CT Angiography for the Detection of Coronary Artery Stenosis and Calcified Plaque: A Systematic Review and Meta-analysis.

Du M, He S, Liu J, Yuan L

pubmed logopapersJul 1 2025
We aimed to evaluate the diagnostic performance of artificial intelligence (AI) in detecting coronary artery stenosis and calcified plaque on CT angiography (CTA), comparing its diagnostic performance with that of radiologists. A thorough search of the literature was performed using PubMed, Web of Science, and Embase, focusing on studies published until October 2024. Studies were included if they evaluated AI models in detecting coronary artery stenosis and calcified plaque on CTA. A bivariate random-effects model was employed to determine combined sensitivity and specificity. Study heterogeneity was assessed using I<sup>2</sup> statistics. The risk of bias was assessed using the revised quality assessment of diagnostic accuracy studies-2 tool, and the evidence level was graded using the Grading of Recommendations Assessment, Development and Evalutiuon (GRADE) system. Out of 1071 initially identified studies, 17 studies with 5560 patients and images were ultimately included for the final analysis. For coronary artery stenosis ≥50%, AI showed a sensitivity of 0.92 (95% CI: 0.88-0.95), specificity of 0.87 (95% CI: 0.80-0.92), and AUC of 0.96 (95% CI: 0.94-0.97), outperforming radiologists with sensitivity of 0.85 (95% CI: 0.67-0.94), specificity of 0.84 (95% CI: 0.62-0.94), and AUC of 0.91 (95% CI: 0.89-0.93). For stenosis ≥70%, AI achieved a sensitivity of 0.88 (95% CI: 0.70-0.96), specificity of 0.96 (95% CI: 0.90-0.99), and AUC of 0.98 (95% CI: 0.96-0.99). In calcified plaque detection, AI demonstrated a sensitivity of 0.93 (95% CI: 0.84-0.97), specificity of 0.94 (95% CI: 0.88-0.96), and AUC of 0.98 (95% CI: 0.96-0.99)." AI-based CT demonstrated superior diagnostic performance compared to clinicians in identifying ≥50% stenosis in coronary arteries and showed excellent diagnostic performance in recognizing ≥70% coronary artery stenosis and calcified plaque. However, limitations include retrospective study designs and heterogeneity in CTA technologies. Further external validation through prospective, multicenter trials is required to confirm these findings. The original findings of this research are included in the article. For additional inquiries, please contact the corresponding authors.

Artificial intelligence image analysis for Hounsfield units in preoperative thoracolumbar CT scans: an automated screening for osteoporosis in patients undergoing spine surgery.

Feng E, Jayasuriya NM, Nathani KR, Katsos K, Machlab LA, Johnson GW, Freedman BA, Bydon M

pubmed logopapersJul 1 2025
This study aimed to develop an artificial intelligence (AI) model for automatically detecting Hounsfield unit (HU) values at the L1 vertebra in preoperative thoracolumbar CT scans. This model serves as a screening tool for osteoporosis in patients undergoing spine surgery, offering an alternative to traditional bone mineral density measurement methods like dual-energy x-ray absorptiometry. The authors utilized two CT scan datasets, comprising 501 images, which were split into training, validation, and test subsets. The nnU-Net framework was used for segmentation, followed by an algorithm to calculate HU values from the L1 vertebra. The model's performance was validated against manual HU calculations by expert raters on 56 CT scans. Statistical measures included the Dice coefficient, Pearson correlation coefficient, intraclass correlation coefficient (ICC), and Bland-Altman plots to assess the agreement between AI and human-derived HU measurements. The AI model achieved a high Dice coefficient of 0.91 for vertebral segmentation. The Pearson correlation coefficient between AI-derived HU and human-derived HU values was 0.96, indicating strong agreement. ICC values for interrater reliability were 0.95 and 0.94 for raters 1 and 2, respectively. The mean difference between AI and human HU values was 7.0 HU, with limits of agreement ranging from -21.1 to 35.2 HU. A paired t-test showed no significant difference between AI and human measurements (p = 0.21). The AI model demonstrated strong agreement with human experts in measuring HU values, validating its potential as a reliable tool for automated osteoporosis screening in spine surgery patients. This approach can enhance preoperative risk assessment and perioperative bone health optimization. Future research should focus on external validation and inclusion of diverse patient demographics to ensure broader applicability.

Deep Learning-enhanced Opportunistic Osteoporosis Screening in Ultralow-Voltage (80 kV) Chest CT: A Preliminary Study.

Li Y, Liu S, Zhang Y, Zhang M, Jiang C, Ni M, Jin D, Qian Z, Wang J, Pan X, Yuan H

pubmed logopapersJul 1 2025
To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening. This study involved 987 patients who underwent 80 kV chest and 120 kV lumbar CT from January to July 2024. Patients were collected from six CT scanners and divided into the training, validation, and test sets 1 and 2 (561: 177: 112: 137). Four convolutional neural networks (CNNs) were employed for automated segmentation (3D VB-Net and SCN), region of interest extraction (3D VB-Net), and BMD calculation (DenseNet and ResNet) of the target vertebrae (T12-L2). The BMD values of T12-L2 were obtained using 80 and 120 kV quantitative CT (QCT), the latter serving as the standard reference. Linear regression and Bland-Altman analyses were used to compare BMD values between 120 kV QCT and 80 kV CNNs, and between 120 kV QCT and 80 kV QCT. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of the 80 kV CNNs and 80 kV QCT for osteoporosis and low BMD from normal BMD. Linear regression and Bland-ltman analyses revealed a stronger correlation (R<sup>2</sup>=0.991-0.998 and 0.990-0.991, P<0.001) and better agreement (mean error, -1.36 to 1.62 and 1.72 to 2.27 mg/cm<sup>3</sup>; 95% limits of agreement, -9.73 to 7.01 and -5.71 to 10.19mg/cm<sup>3</sup>) for BMD between 120 kV QCT and 80 kV CNNs than between 120 kV QCT and 80 kV QCT. The areas under the curve of the 80 kV CNNs and 80 kV QCT in detecting osteoporosis and low BMD were 0.997-1.000 and 0.997-0.998, and 0.998-1.000 and 0.997, respectively. The DL method could achieve fully automated BMD calculation for opportunistic osteoporosis screening with high accuracy using ultralow-voltage 80 kV chest CT performed for lung cancer screening.
Page 79 of 1421416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.