Sort by:
Page 78 of 1221217 results

Application of Deep Learning Accelerated Image Reconstruction in T2-Weighted Turbo Spin-Echo Imaging of the Brain at 7T.

Liu Z, Zhou X, Tao S, Ma J, Nickel D, Liebig P, Mostapha M, Patel V, Westerhold EM, Mojahed H, Gupta V, Middlebrooks EH

pubmed logopapersJun 12 2025
Prolonged imaging times and motion sensitivity at 7T necessitate advancements in image acceleration techniques. This study evaluates a 7T deep learning (DL)-based image reconstruction by using a deep neural network trained on 7T data, applied to T2-weighted turbo spin-echo imaging. Raw <i>k</i>-space data from 30 consecutive clinical 7T brain MRI patients was reconstructed by using both DL and standard methods. Qualitative assessments included overall image quality, artifacts, sharpness, structural conspicuity, and noise level, while quantitative metrics evaluated contrast-to-noise ratio (CNR) and image noise. DL-based reconstruction consistently outperformed standard methods across all qualitative metrics (<i>P</i> < .001), with a mean CNR increase of 50.8% (95% CI: 43.0%-58.6%) and a mean noise reduction of 35.1% (95% CI: 32.7%-37.6%). These findings demonstrate that DL-based reconstruction at 7T significantly enhances image quality without introducing adverse effects, offering a promising tool for addressing the challenges of ultra-high-field MRI.

AI-Based screening for thoracic aortic aneurysms in routine breast MRI.

Bounias D, Führes T, Brock L, Graber J, Kapsner LA, Liebert A, Schreiter H, Eberle J, Hadler D, Skwierawska D, Floca R, Neher P, Kovacs B, Wenkel E, Ohlmeyer S, Uder M, Maier-Hein K, Bickelhaupt S

pubmed logopapersJun 12 2025
Prognosis for thoracic aortic aneurysms is significantly worse for women than men, with a higher mortality rate observed among female patients. The increasing use of magnetic resonance breast imaging (MRI) offers a unique opportunity for simultaneous detection of both breast cancer and thoracic aortic aneurysms. We retrospectively validate a fully-automated artificial neural network (ANN) pipeline on 5057 breast MRI examinations from public (Duke University Hospital/EA1141 trial) and in-house (Erlangen University Hospital) data. The ANN, benchmarked against 3D-ground-truth segmentations, clinical reports, and a multireader panel, demonstrates high technical robustness (dice/clDice 0.88-0.91/0.97-0.99) across different vendors and field strengths. The ANN improves aneurysm detection rates by 3.5-fold compared with routine clinical readings, highlighting its potential to improve early diagnosis and patient outcomes. Notably, a higher odds ratio (OR = 2.29, CI: [0.55,9.61]) for thoracic aortic aneurysms is observed in women with breast cancer or breast cancer history, suggesting potential further benefits from integrated simultaneous assessment for cancer and aortic aneurysms.

Machine Learning-Based Prediction of Delayed Neurological Sequelae in Carbon Monoxide Poisoning Using Automatically Extracted MR Imaging Features.

Lee GY, Sohn CH, Kim D, Jeon SB, Yun J, Ham S, Nam Y, Yum J, Kim WY, Kim N

pubmed logopapersJun 12 2025
Delayed neurological sequelae are among the most serious complications of carbon monoxide poisoning. However, no reliable tools are available for evaluating its potential risk. We aimed to assess whether machine learning models using imaging features that were automatically extracted from brain MRI can predict the potential delayed neurological sequelae risk in patients with acute carbon monoxide poisoning. This single-center, retrospective, observational study analyzed a prospectively collected registry of acute carbon monoxide poisoning patients who visited our emergency department from April 2011 to December 2015. Overall, 1618 radiomics and 4 lesion-segmentation features from DWI b1000 and ADC images, as well as 62 clinical variables were extracted from each patient. The entire dataset was divided into five subsets, with one serving as the hold-out test set and the remaining four used for training and tuning. Four machine learning models, linear regression, support vector machine, random forest, and extreme gradient boosting, as well as an ensemble model, were trained and evaluated using 20 different data configurations. The primary evaluation metric was the mean and 95% CI of the area under the receiver operating characteristic curve. Shapley additive explanations were calculated and visualized to enhance model interpretability. Of the 373 patients, delayed neurological sequelae occurred in 99 (26.5%) patients (mean age 43.0 ± 15.2; 62.0% male). The means [95% CIs] of the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of the best performing machine learning model for predicting the development of delayed neurological sequelae were 0.88 [0.86-0.9], 0.82 [0.8-0.83], 0.81 [0.79-0.83], and 0.82 [0.8-0.84], respectively. Among imaging features, the presence, size, and number of acute brain lesions on DWI b1000 and ADC images more accurately predicted DNS risk than advanced radiomics features based on shape, texture and wavelet transformation. Machine learning models developed using automatically extracted brain MRI features with clinical features can distinguish patients at delayed neurological sequelae risk. The models enable effective prediction of delayed neurological sequelae in patients with acute carbon monoxide poisoning, facilitating timely treatment planning for prevention. ABL = Acute brain lesion; AUROC = area under the receiver operating characteristic curve; CO = carbon monoxide; DNS = delayed neurological sequelae; LR = logistic regression; ML = machine learning; RF = random forest; SVM = support vector machine; XGBoost = extreme gradient boosting.

Accelerated MRI in temporomandibular joints using AI-assisted compressed sensing technique: a feasibility study.

Ye Z, Lyu X, Zhao R, Fan P, Yang S, Xia C, Li Z, Xiong X

pubmed logopapersJun 12 2025
To investigate the feasibility of accelerated MRI with artificial intelligence-assisted compressed sensing (ACS) technique in the temporomandibular joint (TMJ) and compare its performance with parallel imaging (PI) protocol and standard (STD) protocol. Participants with TMJ-related symptoms were prospectively enrolled from April 2023 to May 2024, and underwent bilateral TMJ imaging examinations using ACS protocol (6:08 min), PI protocol (10:57 min), and STD protocol (13:28 min). Overall image quality and visibility of TMJ relevant structures were qualitatively evaluated by a 4-point Likert scale. Quantitative analysis of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of TMJ disc, condyle, and lateral pterygoid muscle (LPM) was performed. Diagnostic agreement of joint effusion and disc displacement among protocols and investigators was assessed by Fleiss' kappa analysis. A total of 51 participants (16 male and 35 female) with 102 TMJs were included. The overall image quality and most structures of the ACS protocol were significantly higher than the STD protocol (all p < 0.05), and similar to the PI protocol. For quantitative analysis, the ACS protocol demonstrated significantly higher SNR and CNR than the STD protocol in the TMJ disc, condyle, and LPM (all p < 0.05), and the ACS protocol showed comparable SNR to the PI protocol in most sequences. Good to excellent inter-protocol and inter-observer agreement was observed for diagnosing TMJ abnormalities (κ = 0.699-1.000). Accelerated MRI with ACS technique can significantly reduce the acquisition time of TMJ, while providing superior or equivalent image quality and great diagnostic agreement with PI and STD protocols. Question Patients with TMJ disorders often cannot endure long MRI examinations due to orofacial pain, necessitating accelerated MRI to improve patient comfort. Findings ACS technique can significantly reduce acquisition time in TMJ imaging while providing superior or equivalent image quality. Clinical relevance The time-saving ACS technique improves image quality and achieves excellent diagnostic agreement in the evaluation of joint effusion and disc displacement. It helps optimize clinical MRI workflow in patients with TMJ disorders.

RealKeyMorph: Keypoints in Real-world Coordinates for Resolution-agnostic Image Registration

Mina C. Moghadam, Alan Q. Wang, Omer Taub, Martin R. Prince, Mert R. Sabuncu

arxiv logopreprintJun 12 2025
Many real-world settings require registration of a pair of medical images that differ in spatial resolution, which may arise from differences in image acquisition parameters like pixel spacing, slice thickness, and field-of-view. However, all previous machine learning-based registration techniques resample images onto a fixed resolution. This is suboptimal because resampling can introduce artifacts due to interpolation. To address this, we present RealKeyMorph (RKM), a resolution-agnostic method for image registration. RKM is an extension of KeyMorph, a registration framework which works by training a network to learn corresponding keypoints for a given pair of images, after which a closed-form keypoint matching step is used to derive the transformation that aligns them. To avoid resampling and enable operating on the raw data, RKM outputs keypoints in real-world coordinates of the scanner. To do this, we leverage the affine matrix produced by the scanner (e.g., MRI machine) that encodes the mapping from voxel coordinates to real world coordinates. By transforming keypoints into real-world space and integrating this into the training process, RKM effectively enables the extracted keypoints to be resolution-agnostic. In our experiments, we demonstrate the advantages of RKM on the registration task for orthogonal 2D stacks of abdominal MRIs, as well as 3D volumes with varying resolutions in brain datasets.

Prompt-Guided Latent Diffusion with Predictive Class Conditioning for 3D Prostate MRI Generation

Emerson P. Grabke, Masoom A. Haider, Babak Taati

arxiv logopreprintJun 11 2025
Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM training typically relies on performance- or scientific accessibility-limiting strategies including a reliance on short-prompt text encoders, the reuse of non-medical LDMs, or a requirement for fine-tuning with large data volumes. We propose a Class-Conditioned Efficient Large Language model Adapter (CCELLA) to address these limitations. CCELLA is a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with non-medical large language model-encoded text features through cross-attention and with pathology classification through the timestep embedding. We also propose a joint loss function and a data-efficient LDM training framework. In combination, these strategies enable pathology-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility. Our method achieves a 3D FID score of 0.025 on a size-limited prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.071. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method to the training dataset improves classifier accuracy from 69% to 74%. Training a classifier solely on our method's synthetic images achieved comparable performance to training on real images alone.

CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain

Maik Dannecker, Vasiliki Sideri-Lampretsa, Sophie Starck, Angeline Mihailov, Mathieu Milh, Nadine Girard, Guillaume Auzias, Daniel Rueckert

arxiv logopreprintJun 11 2025
Magnetic resonance imaging of fetal and neonatal brains reveals rapid neurodevelopment marked by substantial anatomical changes unfolding within days. Studying this critical stage of the developing human brain, therefore, requires accurate brain models-referred to as atlases-of high spatial and temporal resolution. To meet these demands, established traditional atlases and recently proposed deep learning-based methods rely on large and comprehensive datasets. This poses a major challenge for studying brains in the presence of pathologies for which data remains scarce. We address this limitation with CINeMA (Conditional Implicit Neural Multi-Modal Atlas), a novel framework for creating high-resolution, spatio-temporal, multimodal brain atlases, suitable for low-data settings. Unlike established methods, CINeMA operates in latent space, avoiding compute-intensive image registration and reducing atlas construction times from days to minutes. Furthermore, it enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC). CINeMA supports downstream tasks such as tissue segmentation and age prediction whereas its generative properties enable synthetic data creation and anatomically informed data augmentation. Surpassing state-of-the-art methods in accuracy, efficiency, and versatility, CINeMA represents a powerful tool for advancing brain research. We release the code and atlases at https://github.com/m-dannecker/CINeMA.

Diagnostic accuracy of machine learning-based magnetic resonance imaging models in breast cancer classification: a systematic review and meta-analysis.

Zhang J, Wu Q, Lei P, Zhu X, Li B

pubmed logopapersJun 11 2025
This meta-analysis evaluates the diagnostic accuracy of machine learning (ML)-based magnetic resonance imaging (MRI) models in distinguishing benign from malignant breast lesions and explores factors influencing their performance. A systematic search of PubMed, Embase, Cochrane Library, Scopus, and Web of Science identified 12 eligible studies (from 3,739 records) up to August 2024. Data were extracted to calculate sensitivity, specificity, and area under the curve (AUC) using bivariate models in R 4.4.1. Study quality was assessed via QUADAS-2. Pooled sensitivity and specificity were 0.86 (95% CI: 0.82-0.90) and 0.82 (95% CI: 0.78-0.86), respectively, with an overall AUC of 0.90 (95% CI: 0.85-0.90). Diagnostic odds ratio (DOR) was 39.11 (95% CI: 25.04-53.17). Support vector machine (SVM) classifiers outperformed Naive Bayes, with higher sensitivity (0.88 vs. 0.86) and specificity (0.82 vs. 0.78). Heterogeneity was primarily attributed to MRI equipment (P = 0.037). ML-based MRI models demonstrate high diagnostic accuracy for breast cancer classification, with pooled sensitivity of 0.86 (95% CI: 0.82-0.90), specificity of 0.82 (95% CI: 0.78-0.86), and AUC of 0.90 (95% CI: 0.85-0.90). These results support their clinical utility as screening and diagnostic adjuncts, while highlighting the need for standardized protocols to improve generalizability.

Conditional diffusion models for guided anomaly detection in brain images using fluid-driven anomaly randomization

Ana Lawry Aguila, Peirong Liu, Oula Puonti, Juan Eugenio Iglesias

arxiv logopreprintJun 11 2025
Supervised machine learning has enabled accurate pathology detection in brain MRI, but requires training data from diseased subjects that may not be readily available in some scenarios, for example, in the case of rare diseases. Reconstruction-based unsupervised anomaly detection, in particular using diffusion models, has gained popularity in the medical field as it allows for training on healthy images alone, eliminating the need for large disease-specific cohorts. These methods assume that a model trained on normal data cannot accurately represent or reconstruct anomalies. However, this assumption often fails with models failing to reconstruct healthy tissue or accurately reconstruct abnormal regions i.e., failing to remove anomalies. In this work, we introduce a novel conditional diffusion model framework for anomaly detection and healthy image reconstruction in brain MRI. Our weakly supervised approach integrates synthetically generated pseudo-pathology images into the modeling process to better guide the reconstruction of healthy images. To generate these pseudo-pathologies, we apply fluid-driven anomaly randomization to augment real pathology segmentation maps from an auxiliary dataset, ensuring that the synthetic anomalies are both realistic and anatomically coherent. We evaluate our model's ability to detect pathology, using both synthetic anomaly datasets and real pathology from the ATLAS dataset. In our extensive experiments, our model: (i) consistently outperforms variational autoencoders, and conditional and unconditional latent diffusion; and (ii) surpasses on most datasets, the performance of supervised inpainting methods with access to paired diseased/healthy images.

Towards more reliable prostate cancer detection: Incorporating clinical data and uncertainty in MRI deep learning.

Taguelmimt K, Andrade-Miranda G, Harb H, Thanh TT, Dang HP, Malavaud B, Bert J

pubmed logopapersJun 11 2025
Prostate cancer (PCa) is one of the most common cancers among men, and artificial intelligence (AI) is emerging as a promising tool to enhance its diagnosis. This work proposes a classification approach for PCa cases using deep learning techniques. We conducted a comparison between unimodal models based either on biparametric magnetic resonance imaging (bpMRI) or clinical data (such as prostate-specific antigen levels, prostate volume, and age). We also introduced a bimodal model that simultaneously integrates imaging and clinical data to address the limitations of unimodal approaches. Furthermore, we propose a framework that not only detects the presence of PCa but also evaluates the uncertainty associated with the predictions. This approach makes it possible to identify highly confident predictions and distinguish them from those characterized by uncertainty, thereby enhancing the reliability and applicability of automated medical decisions in clinical practice. The results show that the bimodal model significantly improves performance, with an area under the curve (AUC) reaching 0.82±0.03, a sensitivity of 0.73±0.04, while maintaining high specificity. Uncertainty analysis revealed that the bimodal model produces more confident predictions, with an uncertainty accuracy of 0.85, surpassing the imaging-only model (which is 0.71). This increase in reliability is crucial in a clinical context, where precise and dependable diagnostic decisions are essential for patient care. The integration of clinical data with imaging data in a bimodal model not only improves diagnostic performance but also strengthens the reliability of predictions, making this approach particularly suitable for clinical use.
Page 78 of 1221217 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.