Sort by:
Page 75 of 99982 results

Retrieval-Augmented Generation with Large Language Models in Radiology: From Theory to Practice.

Fink A, Rau A, Reisert M, Bamberg F, Russe MF

pubmed logopapersJun 4 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Large language models (LLMs) hold substantial promise in addressing the growing workload in radiology, but recent studies also reveal limitations, such as hallucinations and opacity in sources for LLM responses. Retrieval-augmented Generation (RAG) based LLMs offer a promising approach to streamline radiology workflows by integrating reliable, verifiable, and customizable information. Ongoing refinement is critical to enable RAG models to manage large amounts of input data and to engage in complex multiagent dialogues. This report provides an overview of recent advances in LLM architecture, including few-shot and zero-shot learning, RAG integration, multistep reasoning, and agentic RAG, and identifies future research directions. Exemplary cases demonstrate the practical application of these techniques in radiology practice. ©RSNA, 2025.

Recent Advances in Medical Image Classification

Loan Dao, Ngoc Quoc Ly

arxiv logopreprintJun 4 2025
Medical image classification is crucial for diagnosis and treatment, benefiting significantly from advancements in artificial intelligence. The paper reviews recent progress in the field, focusing on three levels of solutions: basic, specific, and applied. It highlights advances in traditional methods using deep learning models like Convolutional Neural Networks and Vision Transformers, as well as state-of-the-art approaches with Vision Language Models. These models tackle the issue of limited labeled data, and enhance and explain predictive results through Explainable Artificial Intelligence.

Advancements in Artificial Intelligence Applications for Cardiovascular Disease Research

Yuanlin Mo, Haishan Huang, Bocheng Liang, Weibo Ma

arxiv logopreprintJun 4 2025
Recent advancements in artificial intelligence (AI) have revolutionized cardiovascular medicine, particularly through integration with computed tomography (CT), magnetic resonance imaging (MRI), electrocardiography (ECG) and ultrasound (US). Deep learning architectures, including convolutional neural networks and generative adversarial networks, enable automated analysis of medical imaging and physiological signals, surpassing human capabilities in diagnostic accuracy and workflow efficiency. However, critical challenges persist, including the inability to validate input data accuracy, which may propagate diagnostic errors. This review highlights AI's transformative potential in precision diagnostics while underscoring the need for robust validation protocols to ensure clinical reliability. Future directions emphasize hybrid models integrating multimodal data and adaptive algorithms to refine personalized cardiovascular care.

Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models

Nurislam Tursynbek, Hastings Greer, Basar Demir, Marc Niethammer

arxiv logopreprintJun 3 2025
Diffusion models, while trained for image generation, have emerged as powerful foundational feature extractors for downstream tasks. We find that off-the-shelf diffusion models, trained exclusively to generate natural RGB images, can identify semantically meaningful correspondences in medical images. Building on this observation, we propose to leverage diffusion model features as a similarity measure to guide deformable image registration networks. We show that common intensity-based similarity losses often fail in challenging scenarios, such as when certain anatomies are visible in one image but absent in another, leading to anatomically inaccurate alignments. In contrast, our method identifies true semantic correspondences, aligning meaningful structures while disregarding those not present across images. We demonstrate superior performance of our approach on two tasks: multimodal 2D registration (DXA to X-Ray) and monomodal 3D registration (brain-extracted to non-brain-extracted MRI). Code: https://github.com/uncbiag/dgir

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

Artificial intelligence in bone metastasis analysis: Current advancements, opportunities and challenges.

Afnouch M, Bougourzi F, Gaddour O, Dornaika F, Ahmed AT

pubmed logopapersJun 3 2025
Artificial Intelligence is transforming medical imaging, particularly in the analysis of bone metastases (BM), a serious complication of advanced cancers. Machine learning and deep learning techniques offer new opportunities to improve detection, recognition, and segmentation of bone metastasis. Yet, challenges such as limited data, interpretability, and clinical validation remain. Following PRISMA guidelines, we reviewed artificial intelligence methods and applications for bone metastasis analysis across major imaging modalities including CT, MRI, PET, SPECT, and bone scintigraphy. The survey includes traditional machine learning models and modern deep learning architectures such as CNNs and transformers. We also examined available datasets and their effect in developing artificial intelligence in this field. Artificial intelligence models have achieved strong performance across tasks and modalities, with Convolutional Neural Network (CNN) and Transformer architectures showing particularly efficient performance across different tasks. However, limitations persist, including data imbalance, overfitting risks, and the need for greater transparency. Clinical translation is also challenged by regulatory and validation hurdles. Artificial intelligence holds strong potential to improve BM diagnosis and streamline radiology workflows. To reach clinical maturity, future work must address data diversity, model explainability, and large-scale validation, which are critical steps for being trusted to be integrated into the oncology care routines.

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

Development and validation of machine learning models for distal instrumentation-related problems in patients with degenerative lumbar scoliosis based on preoperative CT and MRI.

Feng Z, Yang H, Li Z, Zhang X, Hai Y

pubmed logopapersJun 3 2025
This investigation proposes a machine learning framework leveraging preoperative MRI and CT imaging data to predict postoperative complications related to distal instrumentation (DIP) in degenerative lumbar scoliosis patients undergoing long-segment fusion procedures. We retrospectively analyzed 136 patients, categorizing based on the development of DIP. Preoperative MRI and CT scans provided muscle function and bone density data, including the relative gross cross-sectional area and relative functional cross-sectional area of the multifidus, erector spinae, paraspinal extensor, psoas major muscles, the gross muscle fat index and functional muscle fat index, Hounsfield unit values of the lumbosacral region and the lower instrumented vertebra. Predictive factors for DIP were selected through stepwise LASSO regression. The filtered and all factors were incorporated into six machine learning algorithms twice, namely k-nearest neighbors, decision tree, support vector machine, random forest, multilayer perceptron (MLP), and Naïve Bayes, with tenfold cross-validation. Among patients, 16.9% developed DIP, with the multifidus' functional cross-sectional area and lumbosacral region's Hounsfield unit value as significant predictors. The MLP model exhibited superior performance when all predictive factors were input, with an average AUC of 0.98 and recall rate of 0.90. We compared various machine learning algorithms and constructed, trained, and validated predictive models based on muscle function and bone density-related variables obtained from preoperative CT and MRI, which could identify patients with high risk of DIP after long-segment spinal fusion surgery.

Evaluating the Diagnostic Accuracy of ChatGPT-4.0 for Classifying Multimodal Musculoskeletal Masses: A Comparative Study with Human Raters.

Bosbach WA, Schoeni L, Beisbart C, Senge JF, Mitrakovic M, Anderson SE, Achangwa NR, Divjak E, Ivanac G, Grieser T, Weber MA, Maurer MH, Sanal HT, Daneshvar K

pubmed logopapersJun 3 2025
Novel artificial intelligence tools have the potential to significantly enhance productivity in medicine, while also maintaining or even improving treatment quality. In this study, we aimed to evaluate the current capability of ChatGPT-4.0 to accurately interpret multimodal musculoskeletal tumor cases.We created 25 cases, each containing images from X-ray, computed tomography, magnetic resonance imaging, or scintigraphy. ChatGPT-4.0 was tasked with classifying each case using a six-option, two-choice question, where both a primary and a secondary diagnosis were allowed. For performance evaluation, human raters also assessed the same cases.When only the primary diagnosis was taken into account, the accuracy of human raters was greater than that of ChatGPT-4.0 by a factor of nearly 2 (87% vs. 44%). However, in a setting that also considered secondary diagnoses, the performance gap shrank substantially (accuracy: 94% vs. 71%). Power analysis relying on Cohen's w confirmed the adequacy of the sample set size (n: 25).The tested artificial intelligence tool demonstrated lower performance than human raters. Considering factors such as speed, constant availability, and potential future improvements, it appears plausible that artificial intelligence tools could serve as valuable assistance systems for doctors in future clinical settings. · ChatGPT-4.0 classifies musculoskeletal cases using multimodal imaging inputs.. · Human raters outperform AI in primary diagnosis accuracy by a factor of nearly two.. · Including secondary diagnoses improves AI performance and narrows the gap.. · AI demonstrates potential as an assistive tool in future radiological workflows.. · Power analysis confirms robustness of study findings with the current sample size.. · Bosbach WA, Schoeni L, Beisbart C et al. Evaluating the Diagnostic Accuracy of ChatGPT-4.0 for Classifying Multimodal Musculoskeletal Masses: A Comparative Study with Human Raters. Rofo 2025; DOI 10.1055/a-2594-7085.

Computer-Aided Decision Support Systems of Alzheimer's Disease Diagnosis - A Systematic Review.

Günaydın T, Varlı S

pubmed logopapersJun 3 2025
The incidence of Alzheimer's disease is rising with the increasing elderly population worldwide. While no cure exists, early diagnosis can significantly slow disease progression. Computer-aided diagnostic systems are becoming critical tools for assisting in the early detection of Alzheimer's disease. In this systematic review, we aim to evaluate recent advancements in computer-aided decision support systems for Alzheimer's disease diagnosis, focusing on data modalities, machine learning methods, and performance metrics. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies published between 2021 and 2024 were retrieved from PubMed, IEEEXplore and Web of Science, using search terms related to Alzheimer's disease classification, neuroimaging, machine learning, and diagnostic performance. A total of 39 studies met the inclusion criteria, focusing on the use of Magnetic Resonance Imaging, Positron Emission Tomography, and biomarkers for Alzheimer's disease classification using machine learning models. Multimodal approaches, combining Magnetic Resonance Imaging with Positron Emission Tomography and Cognitive assessments, outperformed single-modality studies in diagnostic accuracy reliability. Convolutional Neural Networks were the most commonly used machine learning models, followed by hybrid models and Random Forest. The highest accuracy reported for binary classification was 100%, while multi-class classification achieved up to 99.98%. Techniques like Synthetic Minority Over-sampling Technique and data augmentation were frequently employed to address data imbalance, improving model generalizability. Our review highlights the advantages of using multimodal data in computer-aided decision support systems for more accurate Alzheimer's disease diagnosis. However, we also identified several limitations, including data imbalance, small sample sizes, and the lack of external validation in most studies. Future research should utilize larger, more diverse datasets, incorporate longitudinal data, and validate models in real-world clinical trials. Additionally, there is a growing need for explainability in machine learning models to ensure they are interpretable and trusted in clinical settings. While computer-aided decision support systems show great promise in improving the early diagnosis of Alzheimer's disease, further work is needed to enhance their robustness, generalizability, and clinical applicability. By addressing these challenges, computer-aided decision support systems could play a pivotal role in the early detection and management of Alzheimer's disease, potentially improving patient outcomes and reducing healthcare costs.
Page 75 of 99982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.