Sort by:
Page 75 of 1431421 results

Lightweight Network Enhancing High-Resolution Feature Representation for Efficient Low Dose CT Denoising.

Li J, Li Y, Qi F, Wang S, Zhang Z, Huang Z, Yu Z

pubmed logopapersJul 21 2025
Low-dose computed tomography plays a crucial role in reducing radiation exposure in clinical imaging, however, the resultant noise significantly impacts image quality and diagnostic precision. Recent transformer-based models have demonstrated strong denoising capabilities but are often constrained by high computational complexity. To overcome these limitations, we propose AMFA-Net, an adaptive multi-order feature aggregation network that provides a lightweight architecture for enhancing highresolution feature representation in low-dose CT imaging. AMFA-Net effectively integrates local and global contexts within high-resolution feature maps while learning discriminative representations through multi-order context aggregation. We introduce an agent-based self-attention crossshaped window transformer block that efficiently captures global context in high-resolution feature maps, which is subsequently fused with backbone features to preserve critical structural information. Our approach employs multiorder gated aggregation to adaptively guide the network in capturing expressive interactions that may be overlooked in fused features, thereby producing robust representations for denoised image reconstruction. Experiments on two challenging public datasets with 25% and 10% full-dose CT image quality demonstrate that our method surpasses state-of-the-art approaches in denoising performance with low computational cost, highlighting its potential for realtime medical applications.

Imaging-aided diagnosis and treatment based on artificial intelligence for pulmonary nodules: A review.

Gao H, Li J, Wu Y, Tang Z, He X, Zhao F, Chen Y, He X

pubmed logopapersJul 21 2025
Pulmonary nodules are critical indicators for the early detection of lung cancer; however, their diagnosis and management pose significant challenges due to the variability in nodule characteristics, reader fatigue, and limited clinical expertise, often leading to diagnostic errors. The rapid advancement of artificial intelligence (AI) presents promising solutions to address these issues. This review compares traditional rule-based methods, handcrafted feature-based machine learning, radiomics, deep learning, and hybrid models incorporating Transformers or attention mechanisms. It systematically compares their methodologies, clinical applications (diagnosis, treatment, prognosis), and dataset usage to evaluate performance, applicability, and limitations in pulmonary nodule management. AI advances have significantly improved pulmonary nodule management, with transformer-based models achieving leading accuracy in segmentation, classification, and subtyping. The fusion of multimodal imaging CT, PET, and MRI further enhances diagnostic precision. Additionally, AI aids treatment planning and prognosis prediction by integrating radiomics with clinical data. Despite these advances, challenges remain, including domain shift, high computational demands, limited interpretability, and variability across multi-center datasets. Artificial intelligence (AI) has transformative potential in improving the diagnosis and treatment of lung nodules, especially in improving the accuracy of lung cancer treatment and patient prognosis, where significant progress has been made.

Noninvasive Deep Learning System for Preoperative Diagnosis of Follicular-Like Thyroid Neoplasms Using Ultrasound Images: A Multicenter, Retrospective Study.

Shen H, Huang Y, Yan W, Zhang C, Liang T, Yang D, Feng X, Liu S, Wang Y, Cao W, Cheng Y, Chen H, Ni Q, Wang F, You J, Jin Z, He W, Sun J, Yang D, Liu L, Cao B, Zhang X, Li Y, Pei S, Zhang S, Zhang B

pubmed logopapersJul 21 2025
To propose a deep learning (DL) system for the preoperative diagnosis of follicular-like thyroid neoplasms (FNs) using routine ultrasound images. Preoperative diagnosis of malignancy in nodules suspicious for an FN remains challenging. Ultrasound, fine-needle aspiration cytology, and intraoperative frozen section pathology cannot unambiguously distinguish between benign and malignant FNs, leading to unnecessary biopsies and operations in benign nodules. This multicenter, retrospective study included 3634 patients who underwent ultrasound and received a definite diagnosis of FN from 11 centers, comprising thyroid follicular adenoma (n=1748), follicular carcinoma (n=299), and follicular variant of papillary thyroid carcinoma (n=1587). Four DL models including Inception-v3, ResNet50, Inception-ResNet-v2, and DenseNet161 were constructed on a training set (n=2587, 6178 images) and were verified on an internal validation set (n=648, 1633 images) and an external validation set (n=399, 847 images). The diagnostic efficacy of the DL models was evaluated against the ACR TI-RADS regarding the area under the curve (AUC), sensitivity, specificity, and unnecessary biopsy rate. When externally validated, the four DL models yielded robust and comparable performance, with AUCs of 82.2%-85.2%, sensitivities of 69.6%-76.0%, and specificities of 84.1%-89.2%, which outperformed the ACR TI-RADS. Compared to ACR TI-RADS, the DL models showed a higher biopsy rate of malignancy (71.6% -79.9% vs 37.7%, P<0.001) and a significantly lower unnecessary FNAB rate (8.5% -12.8% vs 40.7%, P<0.001). This study provides a noninvasive DL tool for accurate preoperative diagnosis of FNs, showing better performance than ACR TI-RADS and reducing unnecessary invasive interventions.

AI-based body composition analysis of CT data has the potential to predict disease course in patients with multiple myeloma.

Wegner F, Sieren MM, Grasshoff H, Berkel L, Rowold C, Röttgerding MP, Khalil S, Mogadas S, Nensa F, Hosch R, Riemekasten G, Hamm AF, von Bubnoff N, Barkhausen J, Kloeckner R, Khandanpour C, Leitner T

pubmed logopapersJul 21 2025
The aim of this study was to evaluate the benefit of a volumetric AI-based body composition analysis (BCA) algorithm in multiple myeloma (MM). Therefore, a retrospective monocentric cohort of 91 MM patients was analyzed. The BCA algorithm, powered by a convolutional neural network, quantified tissue compartments and bone density based on routine CT scans. Correlations between BCA data and demographic/clinical parameters were investigated. BCA-endotypes were identified and survival rates were compared between BCA-derived patient clusters. Patients with high-risk cytogenetics exhibited elevated cardiac marker index values. Across Revised-International Staging System (R-ISS) categories, BCA parameters did not show significant differences. However, both subcutaneous and total adipose tissue volumes were significantly lower in patients with progressive disease or death during follow-up compared to patients without progression. Cluster analysis revealed two distinct BCA-endotypes, with one group displaying significantly better survival. Furthermore, a combined model composed of clinical parameters and BCA data demonstrated a higher predictive capability for disease progression compared to models based solely on high-risk cytogenetics or R-ISS. These findings underscore the potential of BCA to improve patient stratification and refining prognostic models in MM.

Artificial intelligence-generated apparent diffusion coefficient (AI-ADC) maps for prostate gland assessment: a multi-reader study.

Ozyoruk KB, Harmon SA, Yilmaz EC, Huang EP, Gelikman DG, Gaur S, Giganti F, Law YM, Margolis DJ, Jadda PK, Raavi S, Gurram S, Wood BJ, Pinto PA, Choyke PL, Turkbey B

pubmed logopapersJul 21 2025
To compare the quality of AI-ADC maps and standard ADC maps in a multi-reader study. Multi-reader study included 74 consecutive patients (median age = 66 years, [IQR = 57.25-71.75 years]; median PSA = 4.30 ng/mL [IQR = 1.33-7.75 ng/mL]) with suspected or confirmed PCa, who underwent mpMRI between October 2023 and January 2024. The study was conducted in two rounds, separated by a 4-week wash-out period. In each round, four readers evaluated T2W-MRI and standard or AI-generated ADC (AI-ADC) maps. Fleiss' kappa, quadratic-weighted Cohen's kappa statistics were used to assess inter-reader agreement. Linear mixed effect models were employed to compare the quality evaluation of standard versus AI-ADC maps. AI-ADC maps exhibited significantly enhanced imaging quality compared to standard ADC maps with higher ratings in windowing ease (β = 0.67 [95% CI 0.30-1.04], p < 0.05), prostate boundary delineation (β = 1.38 [95% CI 1.03-1.73], p < 0.001), reductions in distortion (β = 1.68 [95% CI 1.30-2.05], p < 0.001), noise (β = 0.56 [95% CI 0.24-0.88], p < 0.001). AI-ADC maps reduced reacquisition requirements for all readers (β = 2.23 [95% CI 1.69-2.76], p < 0.001), supporting potential workflow efficiency gains. No differences were observed between AI-ADC and standard ADC maps' inter-reader agreement. Our multi-reader study demonstrated that AI-ADC maps improved prostate boundary delineation, had lower image noise, fewer distortions, and higher overall image quality compared to ADC maps. Question Can we synthesize apparent diffusion coefficient (ADC) maps with AI to achieve higher quality maps? Findings On average, readers rated quality factors of AI-ADC maps higher than ADC maps in 34.80% of cases, compared to 5.07% for ADC (p < 0.01). Clinical relevance AI-ADC maps may serve as a reliable diagnostic support tool thanks to their high quality, particularly when the acquired ADC maps include artifacts.

Advances in IPMN imaging: deep learning-enhanced HASTE improves lesion assessment.

Kolck J, Pivetta F, Hosse C, Cao H, Fehrenbach U, Malinka T, Wagner M, Walter-Rittel T, Geisel D

pubmed logopapersJul 21 2025
The prevalence of asymptomatic pancreatic cysts is increasing due to advances in imaging techniques. Among these, intraductal papillary mucinous neoplasms (IPMNs) are most common, with potential for malignant transformation, often necessitating close follow-up. This study evaluates novel MRI techniques for the assessment of IPMN. From May to December 2023, 59 patients undergoing abdominal MRI were retrospectively enrolled. Examinations were conducted on 3-Tesla scanners using a Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) and standard HASTE (HASTE<sub>S</sub>) sequence. Two readers assessed minimum detectable lesion size and lesion-to-parenchyma contrast quantitatively, and qualitative assessments focused on image quality. Statistical analyses included the Wilcoxon signed-rank and chi-squared tests. HASTE<sub>DL</sub> demonstrated superior overall image quality (p < 0.001), with higher sharpness and contrast ratings (p < 0.001, p = 0.112). HASTE<sub>DL</sub> showed enhanced conspicuity of IPMN (p < 0.001) and lymph nodes (p < 0.001), with more frequent visualization of IPMN communication with the pancreatic duct (p < 0.001). Visualization of complex features (dilated pancreatic duct, septa, and mural nodules) was superior in HASTE<sub>DL</sub> (p < 0.001). The minimum detectable cyst size was significantly smaller for HASTE<sub>DL</sub> (4.17 mm ± 3.00 vs. 5.51 mm ± 4.75; p < 0.001). Inter-reader agreement was for (к 0.936) for HASTE<sub>DL</sub>, slightly lower (к 0.885) for HASTE<sub>S</sub>. HASTE<sub>DL</sub> in IPMN imaging provides superior image quality and significantly reduced scan times. Given the increasing prevalence of IPMN and the ensuing clinical need for fast and precise imaging, HASTE<sub>DL</sub> improves the availability and quality of patient care. Question Are there advantages of deep-learning-accelerated MRI in imaging and assessing intraductal papillary mucinous neoplasms (IPMN)? Findings Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) demonstrated superior image quality, improved conspicuity of "worrisome features" and detection of smaller cysts, with significantly reduced scan times. Clinical relevance HASTEDL provides faster, high-quality MRI imaging, enabling improved diagnostic accuracy and timely risk stratification for IPMN, potentially enhancing patient care and addressing the growing clinical demand for efficient imaging of IPMN.

PXseg: automatic tooth segmentation, numbering and abnormal morphology detection based on CBCT and panoramic radiographs.

Wang R, Cheng F, Dai G, Zhang J, Fan C, Yu J, Li J, Jiang F

pubmed logopapersJul 21 2025
PXseg, a novel approach for tooth segmentation, numbering and abnormal morphology detection in panoramic X-ray (PX), was designed and promoted through optimizing annotation and applying pre-training. Derived from multicenter, ctPXs generated from cone beam computed tomography (CBCT) with accurate 3D labels were utilized for pre-training, while conventional PXs (cPXs) with 2D labels were input for training. Visual and statistical analyses were conducted using the internal dataset to assess segmentation and numbering performances of PXseg and compared with the model without ctPX pre-training, while the accuracy of PXseg detecting abnormal teeth was evaluated using the external dataset consisting of cPXs with complex dental diseases. Besides, a diagnostic testing was performed to contrast diagnostic efficiency with and without PXseg's assistance. The DSC and F1-score of PXseg in tooth segmentation reached 0.882 and 0.902, which increased by 4.6% and 4.0% compared to the model without pre-training. For tooth numbering, the F1-score of PXseg reached 0.943 and increased by 2.2%. Based on the promotion in segmentation, the accuracy of abnormal tooth morphology detection exceeded 0.957 and was 4.3% higher. A website was constructed to assist in PX interpretation, and the diagnostic efficiency was greatly enhanced with the assistance of PXseg. The application of accurate labels in ctPX increased the pre-training weight of PXseg and improved the training effect, achieving promotions in tooth segmentation, numbering and abnormal morphology detection. Rapid and accurate results provided by PXseg streamlined the workflow of PX diagnosis, possessing significant clinical application prospect.

SegDT: A Diffusion Transformer-Based Segmentation Model for Medical Imaging

Salah Eddine Bekhouche, Gaby Maroun, Fadi Dornaika, Abdenour Hadid

arxiv logopreprintJul 21 2025
Medical image segmentation is crucial for many healthcare tasks, including disease diagnosis and treatment planning. One key area is the segmentation of skin lesions, which is vital for diagnosing skin cancer and monitoring patients. In this context, this paper introduces SegDT, a new segmentation model based on diffusion transformer (DiT). SegDT is designed to work on low-cost hardware and incorporates Rectified Flow, which improves the generation quality at reduced inference steps and maintains the flexibility of standard diffusion models. Our method is evaluated on three benchmarking datasets and compared against several existing works, achieving state-of-the-art results while maintaining fast inference speeds. This makes the proposed model appealing for real-world medical applications. This work advances the performance and capabilities of deep learning models in medical image analysis, enabling faster, more accurate diagnostic tools for healthcare professionals. The code is made publicly available at \href{https://github.com/Bekhouche/SegDT}{GitHub}.

Prediction of OncotypeDX recurrence score using H&E stained WSI images

Cohen, S., Shamai, G., Sabo, E., Cretu, A., Barshack, I., Goldman, T., Bar-Sela, G., Pearson, A. T., Huo, D., Howard, F. M., Kimmel, R., Mayer, C.

medrxiv logopreprintJul 21 2025
The OncotypeDX 21-gene assay is a widely adopted tool for estimating recurrence risk and informing chemotherapy decisions in early-stage, hormone receptor-positive, HER2-negative breast cancer. Although informative, its high cost and long turnaround time limit accessibility and delay treatment in low- and middle-income countries, creating a need for alternative solutions. This study presents a deep learning-based approach for predicting OncotypeDX recurrence scores directly from hematoxylin and eosin-stained whole slide images. Our approach leverages a deep learning foundation model pre-trained on 171,189 slides via self-supervised learning, which is fine-tuned for our task. The model was developed and validated using five independent cohorts, out of which three are external. On the two external cohorts that include OncotypeDX scores, the model achieved an AUC of 0.825 and 0.817, and identified 21.9% and 25.1% of the patients as low-risk with sensitivity of 0.97 and 0.95 and negative predictive value of 0.97 and 0.96, showing strong generalizability despite variations in staining protocols and imaging devices. Kaplan-Meier analysis demonstrated that patients classified as low-risk by the model had a significantly better prognosis than those classified as high-risk, with a hazard ratio of 4.1 (P<0.001) and 2.0 (P<0.01) on the two external cohorts that include patient outcomes. This artificial intelligence-driven solution offers a rapid, cost-effective, and scalable alternative to genomic testing, with the potential to enhance personalized treatment planning, especially in resource-constrained settings.

OpenBreastUS: Benchmarking Neural Operators for Wave Imaging Using Breast Ultrasound Computed Tomography

Zhijun Zeng, Youjia Zheng, Hao Hu, Zeyuan Dong, Yihang Zheng, Xinliang Liu, Jinzhuo Wang, Zuoqiang Shi, Linfeng Zhang, Yubing Li, He Sun

arxiv logopreprintJul 20 2025
Accurate and efficient simulation of wave equations is crucial in computational wave imaging applications, such as ultrasound computed tomography (USCT), which reconstructs tissue material properties from observed scattered waves. Traditional numerical solvers for wave equations are computationally intensive and often unstable, limiting their practical applications for quasi-real-time image reconstruction. Neural operators offer an innovative approach by accelerating PDE solving using neural networks; however, their effectiveness in realistic imaging is limited because existing datasets oversimplify real-world complexity. In this paper, we present OpenBreastUS, a large-scale wave equation dataset designed to bridge the gap between theoretical equations and practical imaging applications. OpenBreastUS includes 8,000 anatomically realistic human breast phantoms and over 16 million frequency-domain wave simulations using real USCT configurations. It enables a comprehensive benchmarking of popular neural operators for both forward simulation and inverse imaging tasks, allowing analysis of their performance, scalability, and generalization capabilities. By offering a realistic and extensive dataset, OpenBreastUS not only serves as a platform for developing innovative neural PDE solvers but also facilitates their deployment in real-world medical imaging problems. For the first time, we demonstrate efficient in vivo imaging of the human breast using neural operator solvers.
Page 75 of 1431421 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.