Sort by:
Page 71 of 71702 results

Current application, possibilities, and challenges of artificial intelligence in the management of rheumatoid arthritis, axial spondyloarthritis, and psoriatic arthritis.

Bilgin E

pubmed logopapersJan 1 2025
This narrative review outlines the current applications and considerations of artificial intelligence (AI) for diagnosis, management, and prognosis in rheumatoid arthritis (RA), axial spondyloarthritis (axSpA), and psoriatic arthritis (PsA). Advances in AI, mainly in machine learning and deep learning, have significantly influenced medical research and clinical practice over the past decades by offering precisions in data understanding and treatment approaches. AI applications have enhanced risk prediction models, early diagnosis, and better management in RA. Predictive models have guided treatment decisions such as-response to methotrexate and biologics-while wearable devices and electronic health records (EHR) improve disease activity monitoring. In addition, AI applications are reported as promising for the early identification of extra-articular involvements, prediction, detection, and assessment of comorbidities. In axSpA, AI-driven models using imaging techniques such as sacroiliac radiography, magnetic resonance imaging, and computed tomography have increased diagnostic accuracy, especially for early inflammatory changes. Predictive algorithms help stratify and predict disease outcomes, while clinical decision support systems integrate clinical and imaging data for optimized management. For PsA, AI has also allowed for early detection among psoriasis patients using genetic markers, immune profiling, and EHR-based natural language processing systems. Overall, AI models may predict diagnosis, disease severity, treatment response, and comorbidities to improve care in patients with RA, axSpA, and PsA. As a rapidly developing and improving area, AI has the potential to change our current perspective of medical practice by offering better diagnostic evaluation and treatments and improved patient follow-up. Multimodal AI, focusing on collaboration, reliability, transparency, and patient-centered innovation, looks like the future of medical practice. However, data quality, model interpretability, and ethical considerations must be addressed to ensure reliable and equitable applications in clinical practice.

Cervical vertebral body segmentation in X-ray and magnetic resonance imaging based on YOLO-UNet: Automatic segmentation approach and available tool.

Wang H, Lu J, Yang S, Xiao Y, He L, Dou Z, Zhao W, Yang L

pubmed logopapersJan 1 2025
Cervical spine disorders are becoming increasingly common, particularly among sedentary populations. The accurate segmentation of cervical vertebrae is critical for diagnostic and research applications. Traditional segmentation methods are limited in terms of precision and applicability across imaging modalities. The aim of this study is to develop and evaluate a fully automatic segmentation method and a user-friendly tool for detecting cervical vertebral body using a combined neural network model based on the YOLOv11 and U-Net3 + models. A dataset of X-ray and magnetic resonance imaging (MRI) images was collected, enhanced, and annotated to include 2136 X-ray images and 2184 MRI images. The proposed YOLO-UNet ensemble model was trained and compared with four other groups of image extraction models, including YOLOv11, DeepLabV3+, U-Net3 + for direct image segmentation, and the YOLO-DeepLab network. The evaluation metrics included the Dice coefficient, Hausdorff distance, intersection over union, positive predictive value, and sensitivity. The YOLO-UNet model combined the advantages of the YOLO and U-Net models and demonstrated excellent vertebral body segmentation capabilities on both X-ray and MRI datasets, which were closer to the ground truth images. Compared with other models, it achieved greater accuracy and a more accurate depiction of the vertebral body shape, demonstrated better versatility, and exhibited superior performance across all evaluation indicators. The YOLO-UNet network model provided a robust and versatile solution for cervical vertebral body segmentation, demonstrating excellent accuracy and adaptability across imaging modalities on both X-ray and MRI datasets. The accompanying user-friendly tool enhanced usability, making it accessible to both clinical and research users. In this study, the challenge of large-scale medical annotation tasks was addressed, thereby reducing project costs and supporting advancements in medical information technology and clinical research.
Page 71 of 71702 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.