Task Augmentation-Based Meta-Learning Segmentation Method for Retinopathy.

Authors

Wang J,Mateen M,Xiang D,Zhu W,Shi F,Huang J,Sun K,Dai J,Xu J,Zhang S,Chen X

Abstract

Deep learning (DL) requires large amounts of labeled data, which is extremely time-consuming and laborintensive to obtain for medical image segmentation tasks. Metalearning focuses on developing learning strategies that enable quick adaptation to new tasks with limited labeled data. However, rich-class medical image segmentation datasets for constructing meta-learning multi-tasks are currently unavailable. In addition, data collected from various healthcare sites and devices may present significant distribution differences, potentially degrading model's performance. In this paper, we propose a task augmentation-based meta-learning method for retinal image segmentation (TAMS) to meet labor-intensive annotation demand. A retinal Lesion Simulation Algorithm (LSA) is proposed to automatically generate multi-class retinal disease datasets with pixel-level segmentation labels, such that metalearning tasks can be augmented without collecting data from various sources. In addition, a novel simulation function library is designed to control generation process and ensure interpretability. Moreover, a generative simulation network (GSNet) with an improved adversarial training strategy is introduced to maintain high-quality representations of complex retinal diseases. TAMS is evaluated on three different OCT and CFP image datasets, and comprehensive experiments have demonstrated that TAMS achieves superior segmentation performance than state-of-the-art models.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.