Sort by:
Page 71 of 1421416 results

A CT-Based Deep Learning Radiomics Nomogram for Early Recurrence Prediction in Pancreatic Cancer: A Multicenter Study.

Guan X, Liu J, Xu L, Jiang W, Wang C

pubmed logopapersJul 6 2025
Early recurrence (ER) following curative-intent surgery remains a major obstacle to improving long-term outcomes in patients with pancreatic cancer (PC). The accurate preoperative prediction of ER could significantly aid clinical decision-making and guide postoperative management. A retrospective cohort of 493 patients with histologically confirmed PC who underwent resection was analyzed. Contrast-enhanced computed tomography (CT) images were used for tumor segmentation, followed by radiomics and deep learning feature extraction. In total, four distinct feature selection algorithms were employed. Predictive models were constructed using random forest (RF) and support vector machine (SVM) classifiers. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC). A comprehensive nomogram integrating feature scores and clinical factors was developed and validated. Among all of the constructed models, the Inte-SVM demonstrated superior classification performance. The nomogram, incorporating the Inte-feature score, CT-assessed lymph node status, and carbohydrate antigen 19-9 (CA19-9), yielded excellent predictive accuracy in the validation cohort (AUC = 0.920). Calibration curves showed strong agreement between predicted and observed outcomes, and decision curve analysis confirmed the clinical utility of the nomogram. A CT-based deep learning radiomics nomogram enabled the accurate preoperative prediction of early recurrence in patients with pancreatic cancer. This model may serve as a valuable tool to assist clinicians in tailoring postoperative strategies and promoting personalized therapeutic approaches.

FB-Diff: Fourier Basis-guided Diffusion for Temporal Interpolation of 4D Medical Imaging

Xin You, Runze Yang, Chuyan Zhang, Zhongliang Jiang, Jie Yang, Nassir Navab

arxiv logopreprintJul 6 2025
The temporal interpolation task for 4D medical imaging, plays a crucial role in clinical practice of respiratory motion modeling. Following the simplified linear-motion hypothesis, existing approaches adopt optical flow-based models to interpolate intermediate frames. However, realistic respiratory motions should be nonlinear and quasi-periodic with specific frequencies. Intuited by this property, we resolve the temporal interpolation task from the frequency perspective, and propose a Fourier basis-guided Diffusion model, termed FB-Diff. Specifically, due to the regular motion discipline of respiration, physiological motion priors are introduced to describe general characteristics of temporal data distributions. Then a Fourier motion operator is elaborately devised to extract Fourier bases by incorporating physiological motion priors and case-specific spectral information in the feature space of Variational Autoencoder. Well-learned Fourier bases can better simulate respiratory motions with motion patterns of specific frequencies. Conditioned on starting and ending frames, the diffusion model further leverages well-learned Fourier bases via the basis interaction operator, which promotes the temporal interpolation task in a generative manner. Extensive results demonstrate that FB-Diff achieves state-of-the-art (SOTA) perceptual performance with better temporal consistency while maintaining promising reconstruction metrics. Codes are available.

Computed Tomography Visual Question Answering with Cross-modal Feature Graphing

Yuanhe Tian, Chen Su, Junwen Duan, Yan Song

arxiv logopreprintJul 6 2025
Visual question answering (VQA) in medical imaging aims to support clinical diagnosis by automatically interpreting complex imaging data in response to natural language queries. Existing studies typically rely on distinct visual and textual encoders to independently extract features from medical images and clinical questions, which are subsequently combined to generate answers. Specifically, in computed tomography (CT), such approaches are similar to the conventional practices in medical image analysis. However, these approaches pay less attention to the spatial continuity and inter-slice correlations in the volumetric CT data, leading to fragmented and imprecise responses. In this paper, we propose a novel large language model (LLM)-based framework enhanced by a graph representation of salient features. Different from conventional multimodal encoding strategies, our approach constructs a cross-modal graph integrating both visual and textual features, treating individual CT slices and question tokens as nodes within the graph. We further leverage an attentive graph convolutional network to dynamically fuse information within this structure. The resulting aggregated graph features then serve as a soft prompt to guide a large language model in generating accurate answers. Extensive experiments on the M3D-VQA benchmark demonstrate that our approach consistently outperforms baselines across multiple evaluation metrics, offering more robust reasoning capabilities.

Deep-Learning-Assisted Highly-Accurate COVID-19 Diagnosis on Lung Computed Tomography Images

Yinuo Wang, Juhyun Bae, Ka Ho Chow, Shenyang Chen, Shreyash Gupta

arxiv logopreprintJul 6 2025
COVID-19 is a severe and acute viral disease that can cause symptoms consistent with pneumonia in which inflammation is caused in the alveolous regions of the lungs leading to a build-up of fluid and breathing difficulties. Thus, the diagnosis of COVID using CT scans has been effective in assisting with RT-PCR diagnosis and severity classifications. In this paper, we proposed a new data quality control pipeline to refine the quality of CT images based on GAN and sliding windows. Also, we use class-sensitive cost functions including Label Distribution Aware Loss(LDAM Loss) and Class-balanced(CB) Loss to solve the long-tail problem existing in datasets. Our model reaches more than 0.983 MCC in the benchmark test dataset.

Att-BrainNet: Attention-based BrainNet for lung cancer segmentation network.

Xiao X, Wang Z, Yao J, Wei J, Zhang B, Chen W, Geng Z, Song E

pubmed logopapersJul 5 2025
Most current medical image segmentation models employ a unified feature modeling strategy for all target regions. However, they overlook the significant heterogeneity in lesion structure, boundary characteristics, and semantic texture, which frequently restricts their ability to accurately segment morphologically diverse lesions in complex imaging contexts, thereby reducing segmentation accuracy and robustness. To address this issue, we propose a brain-inspired segmentation framework named BrainNet, which adopts a tri-level backbone encoder-Brain Network-decoder architecture. Such an architecture enables globally guided, locally differentiated feature modeling. We further instantiate the framework with an attention-enhanced segmentation model, termed Att-BrainNet. In this model, a Thalamus Gating Module (TGM) dynamically selects and activates structurally identical but functionally diverse Encephalic Region Networks (ERNs) to collaboratively extract lesion-specific features. In addition, an S-F image enhancement module is incorporated to improve sensitivity to boundaries and fine structures. Meanwhile, multi-head self-attention is embedded in the encoder to strengthen global semantic modeling and regional coordination. Experiments conducted on two lung cancer CT segmentation datasets and the Synapse multi-organ dataset demonstrate that Att-BrainNet outperforms existing mainstream segmentation models in terms of both accuracy and generalization. Further ablation studies and mechanism visualizations confirm the effectiveness of the BrainNet architecture and the dynamic scheduling strategy. This research provides a novel structural paradigm for medical image segmentation and holds promise for extension to other complex segmentation scenarios.

Performance of open-source and proprietary large language models in generating patient-friendly radiology chest CT reports.

Prucker P, Busch F, Dorfner F, Mertens CJ, Bayerl N, Makowski MR, Bressem KK, Adams LC

pubmed logopapersJul 5 2025
Large Language Models (LLMs) show promise for generating patient-friendly radiology reports, but the performance of open-source versus proprietary LLMs needs assessment. To compare open-source and proprietary LLMs in generating patient-friendly radiology reports from chest CTs using quantitative readability metrics and qualitative assessments by radiologists. Fifty chest CT reports were processed by seven LLMs: three open-source models (Llama-3-70b, Mistral-7b, Mixtral-8x7b) and four proprietary models (GPT-4, GPT-3.5-Turbo, Claude-3-Opus, Gemini-Ultra). Simplification was evaluated using five quantitative readability metrics. Three radiologists rated patient-friendliness on a five-point Likert scale across five criteria. Content and coherence errors were counted. Inter-rater reliability and differences among models were statistically assessed. Inter-rater reliability was substantial to near perfect (κ = 0.76-0.86). Qualitatively, Llama-3-70b was non-inferior to leading proprietary models in 4/5 categories. GPT-3.5-Turbo showed the best overall readability, outperforming GPT-4 in two metrics. Llama-3-70b outperformed GPT-3.5-Turbo on the CLI (p = 0.006). Claude-3-Opus and Gemini-Ultra scored lower on readability but were rated highly in qualitative assessments. Claude-3-Opus maintained perfect factual accuracy. Claude-3-Opus and GPT-4 outperformed Llama-3-70b in emotional sensitivity (90.0 % vs 46.0 %, p < 0.001). Llama-3-70b shows strong potential in generating quality, patient-friendly radiology reports, challenging proprietary models. With further adaptation, open-source LLMs could advance patient-friendly reporting technology.

Quantitative CT Imaging in Chronic Obstructive Pulmonary Disease.

Park S, Lee SM, Hwang HJ, Oh SY, Choe J, Seo JB

pubmed logopapersJul 4 2025
Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous condition characterized by diverse pulmonary and extrapulmonary manifestations. Efforts to quantify its various components using CT imaging have advanced, aiming for more precise, objective, and reproducible assessment and management. Beyond emphysema and small airway disease, the two major components of COPD, CT quantification enables the evaluation of pulmonary vascular alteration, ventilation-perfusion mismatches, fissure completeness, and extrapulmonary features such as altered body composition, osteoporosis, and atherosclerosis. Recent advancements, including the application of deep learning techniques, have facilitated fully automated segmentation and quantification of CT parameters, while innovations such as image standardization hold promise for enhancing clinical applicability. Numerous studies have reported associations between quantitative CT parameters and clinical or physiologic outcomes in patients with COPD. However, barriers remain to the routine implementation of these technologies in clinical practice. This review highlights recent research on COPD quantification, explores advances in technology, and also discusses current challenges and potential solutions for improving quantification methods.

Knowledge, attitudes, and practices of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis: a cross-sectional study.

Jiang S, Ma L, Pan K, Zhang H

pubmed logopapersJul 4 2025
Artificial intelligence (AI) holds significant promise for medical applications, particularly in coronary computed tomography angiography (CTA). We assessed the knowledge, attitudes, and practices (KAP) of cardiovascular health care personnel regarding coronary CTA and AI-assisted diagnosis. We conducted a cross-sectional survey from 1 July to 1 August 2024 at Tsinghua University Hospital, Beijing, China. Healthcare professionals, including both physicians and nurses, aged ≥18 years were eligible to participate. We used a structured questionnaire to collect demographic information and KAP scores. We analysed the data using correlation and regression methods, along with structural equation modelling. Among 496 participants, 58.5% were female, 52.6% held a bachelor's degree, and 40.7% worked in radiology. Mean KAP scores were 13.87 (standard deviation (SD) = 4.96, possible range = 0-20) for knowledge, 28.25 (SD = 4.35, possible range = 8-40) for attitude, and 31.67 (SD = 8.23, possible range = 10-50) for practice. Knowledge (r = 0.358; P < 0.001) and attitude positively correlated with practice (r = 0.489; P < 0.001). Multivariate logistic regression indicated that educational level, department affiliation, and job satisfaction were significant predictors of knowledge. Attitude was influenced by marital status, department, and years of experience, while practice was shaped by knowledge, attitude, departmental factors, and job satisfaction. Structural equation modelling showed that knowledge was directly affected by gender (β = -0.121; P = 0.009), workplace (β = -0.133; P = 0.004), department (β = -0.197; P < 0.001), employment status (β = -0.166; P < 0.001), and night shift frequency (β = 0.163; P < 0.001). Attitude was directly influenced by marriage (β = 0.124; P = 0.006) and job satisfaction (β = -0.528; P < 0.001). Practice was directly affected by knowledge (β = 0.389; P < 0.001), attitude (β = 0.533; P < 0.001), and gender (β = -0.092; P = 0.010). Additionally, gender (β = -0.051; P = 0.010) and marriage (β = 0.066; P = 0.007) had indirect effects on practice. Cardiovascular health care personnel exhibited suboptimal knowledge, positive attitudes, and relatively inactive practices regarding coronary CTA and AI-assisted diagnosis. Targeted educational efforts are needed to enhance knowledge and support the integration of AI into clinical workflows.

Novel CAC Dispersion and Density Score to Predict Myocardial Infarction and Cardiovascular Mortality.

Huangfu G, Ihdayhid AR, Kwok S, Konstantopoulos J, Niu K, Lu J, Smallbone H, Figtree GA, Chow CK, Dembo L, Adler B, Hamilton-Craig C, Grieve SM, Chan MTV, Butler C, Tandon V, Nagele P, Woodard PK, Mrkobrada M, Szczeklik W, Aziz YFA, Biccard B, Devereaux PJ, Sheth T, Dwivedi G, Chow BJW

pubmed logopapersJul 4 2025
Coronary artery calcification (CAC) provides robust prediction for major adverse cardiovascular events (MACE), but current techniques disregard plaque distribution and protective effects of high CAC density. We investigated whether a novel CAC-dispersion and density (CAC-DAD) score will exhibit superior prognostic value compared with the Agatston score (AS) for MACE prediction. We conducted a multicenter, retrospective, cross-sectional study of 961 patients (median age, 67 years; 61% male) who underwent cardiac computed tomography for cardiovascular or perioperative risk assessment. Blinded analyzers applied deep learning algorithms to noncontrast scans to calculate the CAC-DAD score, which adjusts for the spatial distribution of CAC and assigns a protective weight factor for lesions with ≥1000 Hounsfield units. Associations were assessed using frailty regression. Over a median follow-up of 30 (30-460) days, 61 patients experienced MACE (nonfatal myocardial infarction or cardiovascular mortality). An elevated CAC-DAD score (≥2050 based on optimal cutoff) captured more MACE than AS ≥400 (74% versus 57%; <i>P</i>=0.002). Univariable analysis revealed that an elevated CAC-DAD score, AS ≥400 and AS ≥100, age, diabetes, hypertension, and statin use predicted MACE. On multivariable analysis, only the CAC-DAD score (hazard ratio, 2.57 [95% CI, 1.43-4.61]; <i>P</i>=0.002), age, statins, and diabetes remained significant. The inclusion of the CAC-DAD score in a predictive model containing demographic factors and AS improved the C statistic from 0.61 to 0.66 (<i>P</i>=0.008). The fully automated CAC-DAD score improves MACE prediction compared with the AS. Patients with a high CAC-DAD score, including those with a low AS, may be at higher risk and warrant intensification of their preventative therapies.

Predicting ESWL success for ureteral stones: a radiomics-based machine learning approach.

Yang R, Zhao D, Ye C, Hu M, Qi X, Li Z

pubmed logopapersJul 4 2025
This study aimed to develop and validate a machine learning (ML) model that integrates radiomics and conventional radiological features to predict the success of single-session extracorporeal shock wave lithotripsy (ESWL) for ureteral stones. This retrospective study included 329 patients with ureteral stones who underwent ESWL between October 2022 and June 2024. Patients were randomly divided into a training set (n = 230) and a test set (n = 99) in a 7:3 ratio. Preoperative clinical data and noncontrast CT images were collected, and radiomic features were extracted by outlining the stone's region of interest (ROI). Univariate analysis was used to identify clinical and conventional radiological features related to the success of single-session ESWL. Radiomic features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm to calculate a radiomic score (Rad-score). Five machine learning models (RF, KNN, LR, SVM, AdaBoost) were developed using 10-fold cross-validation. Model performance was assessed using AUC, accuracy, sensitivity, specificity, and F1 score. Calibration and decision curve analyses were used to evaluate model calibration and clinical value. SHAP analysis was conducted to interpret feature importance, and a nomogram was built to improve model interpretability. Ureteral diameter proximal to the stone (UDPS), stone-to-skin distance (SSD), and renal pelvic width (RPW) were identified as significant predictors. Six radiomic features were selected from 1,595 to calculate the Rad-score. The LR model showed the best performance on the test set, with an accuracy of 83.8%, sensitivity of 84.9%, specificity of 82.6%, F1 score of 84.9%, and AUC of 0.888 (95% CI: 0.822-0.949). SHAP analysis indicated that the Rad-score and UDPS were the most influential features. Calibration and decision curve analyses confirmed the model's good calibration and clinical utility. The LR model, integrating radiomics and conventional radiological features, demonstrated strong performance in predicting the success of single-session ESWL for ureteral stones. This approach may assist clinicians in making more accurate treatment decisions. Retrospectively. Not applicable.
Page 71 of 1421416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.