Sort by:
Page 7 of 875 results

3D Brain MRI Classification for Alzheimer Diagnosis Using CNN with Data Augmentation

Thien Nhan Vo, Bac Nam Ho, Thanh Xuan Truong

arxiv logopreprintMay 7 2025
A three-dimensional convolutional neural network was developed to classify T1-weighted brain MRI scans as healthy or Alzheimer. The network comprises 3D convolution, pooling, batch normalization, dense ReLU layers, and a sigmoid output. Using stochastic noise injection and five-fold cross-validation, the model achieved test set accuracy of 0.912 and area under the ROC curve of 0.961, an improvement of approximately 0.027 over resizing alone. Sensitivity and specificity both exceeded 0.90. These results align with prior work reporting up to 0.10 gain via synthetic augmentation. The findings demonstrate the effectiveness of simple augmentation for 3D MRI classification and motivate future exploration of advanced augmentation methods and architectures such as 3D U-Net and vision transformers.

Cross-organ all-in-one parallel compressed sensing magnetic resonance imaging

Baoshun Shi, Zheng Liu, Xin Meng, Yan Yang

arxiv logopreprintMay 7 2025
Recent advances in deep learning-based parallel compressed sensing magnetic resonance imaging (p-CSMRI) have significantly improved reconstruction quality. However, current p-CSMRI methods often require training separate deep neural network (DNN) for each organ due to anatomical variations, creating a barrier to developing generalized medical image reconstruction systems. To address this, we propose CAPNet (cross-organ all-in-one deep unfolding p-CSMRI network), a unified framework that implements a p-CSMRI iterative algorithm via three specialized modules: auxiliary variable module, prior module, and data consistency module. Recognizing that p-CSMRI systems often employ varying sampling ratios for different organs, resulting in organ-specific artifact patterns, we introduce an artifact generation submodule, which extracts and integrates artifact features into the data consistency module to enhance the discriminative capability of the overall network. For the prior module, we design an organ structure-prompt generation submodule that leverages structural features extracted from the segment anything model (SAM) to create cross-organ prompts. These prompts are strategically incorporated into the prior module through an organ structure-aware Mamba submodule. Comprehensive evaluations on a cross-organ dataset confirm that CAPNet achieves state-of-the-art reconstruction performance across multiple anatomical structures using a single unified model. Our code will be published at https://github.com/shibaoshun/CAPNet.

Corticospinal tract reconstruction with tumor by using a novel direction filter based tractography method.

Zeng Q, Xia Z, Huang J, Xie L, Zhang J, Huang S, Xing Z, Zhuge Q, Feng Y

pubmed logopapersMay 6 2025
The corticospinal tract (CST) is the primary neural pathway responsible for voluntary motor functions, and preoperative CST reconstruction is crucial for preserving nerve functions during neurosurgery. Diffusion magnetic resonance imaging-based tractography is the only noninvasive method to preoperatively reconstruct CST in clinical practice. However, for the largesize bundle CST with complex fiber geometry (fanning fibers), reconstructing its full extent remains challenging with local-derived methods without incorporating global information. Especially in the presence of tumors, the mass effect and partial volume effect cause abnormal diffusion signals. In this work, a CST reconstruction tractography method based on a novel direction filter was proposed, designed to ensure robust CST reconstruction in the clinical dataset with tumors. A direction filter based on a fourth-order differential equation was introduced for global direction estimation. By considering the spatial consistency and leveraging anatomical prior knowledge, the direction filter was computed by minimizing the energy between the target directions and initial fiber directions. On the basis of the new directions corresponding to CST obtained by the direction filter, the fiber tracking method was implemented to reconstruct the fiber trajectory. Additionally, a deep learning-based method along with tractography template prior information was employed to generate the regions of interest (ROIs) and initial fiber directions. Experimental results showed that the proposed method yields higher valid connections and lower no connections and exhibits the fewest broken fibers and short-connected fibers. The proposed method offers an effective tool to enhance CST-related surgical outcomes by optimizing tumor resection and preserving CST.

Multi-task learning for joint prediction of breast cancer histological indicators in dynamic contrast-enhanced magnetic resonance imaging.

Sun R, Li X, Han B, Xie Y, Nie S

pubmed logopapersMay 6 2025
Achieving efficient analysis of multiple pathological indicators has great significance for breast cancer prognosis and therapeutic decision-making. In this study, we aim to explore a deep multi-task learning (MTL) framework for collaborative prediction of histological grade and proliferation marker (Ki-67) status in breast cancer using multi-phase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In the novel design of hybrid multi-task architecture (HMT-Net), co-representative features are explicitly distilled using a feature extraction backbone. A customized prediction network is then introduced to perform soft-parameter sharing between two correlated tasks. Specifically, task-common and task-specific knowledge is transmitted into tower layers for informative interactions. Furthermore, low-level feature maps containing tumor edges and texture details are recaptured by a hard-parameter sharing branch, which are then incorporated into the tower layer for each subtask. Finally, the probabilities of two histological indicators, predicted in the multi-phase DCE-MRI, are separately fused using a decision-level fusion strategy. Experimental results demonstrate that the proposed HMT-Net achieves optimal discriminative performance over other recent MTL architectures and deep models based on single image series, with the area under the receiver operating characteristic curve of 0.908 for tumor grade and 0.694 for Ki-67 status. Benefiting from the innovative HMT-Net, our proposed method elucidates its strong robustness and flexibility in the collaborative prediction task of breast biomarkers. Multi-phase DCE-MRI is expected to contribute valuable dynamic information for breast cancer pathological assessment in a non-invasive manner.

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.

V3DQutrit a volumetric medical image segmentation based on 3D qutrit optimized modified tensor ring model.

Verma P, Kumar H, Shukla DK, Satpathy S, Alsekait DM, Khalaf OI, Alzoubi A, Alqadi BS, AbdElminaam DS, Kushwaha A, Singh J

pubmed logopapersMay 6 2025
This paper introduces 3D-QTRNet, a novel quantum-inspired neural network for volumetric medical image segmentation. Unlike conventional CNNs, which suffer from slow convergence and high complexity, and QINNs, which are limited to grayscale segmentation, our approach leverages qutrit encoding and tensor ring decomposition. These techniques improve segmentation accuracy, optimize memory usage, and accelerate model convergence. The proposed model demonstrates superior performance on the BRATS19 and Spleen datasets, outperforming state-of-the-art CNN and quantum models in terms of Dice similarity and segmentation precision. This work bridges the gap between quantum computing and medical imaging, offering a scalable solution for real-world applications.

Real-time brain tumour diagnoses using a novel lightweight deep learning model.

Alnageeb MHO, M H S

pubmed logopapersMay 6 2025
Brain tumours continue to be a primary cause of worldwide death, highlighting the critical need for effective and accurate diagnostic tools. This article presents MK-YOLOv8, an innovative lightweight deep learning framework developed for the real-time detection and categorization of brain tumours from MRI images. Based on the YOLOv8 architecture, the proposed model incorporates Ghost Convolution, the C3Ghost module, and the SPPELAN module to improve feature extraction and substantially decrease computational complexity. An x-small object detection layer has been added, supporting precise detection of small and x-small tumours, which is crucial for early diagnosis. Trained on the Figshare Brain Tumour (FBT) dataset comprising (3,064) MRI images, MK-YOLOv8 achieved a mean Average Precision (mAP) of 99.1% at IoU (0.50) and 88.4% at IoU (0.50-0.95), outperforming YOLOv8 (98% and 78.8%, respectively). Glioma recall improved by 26%, underscoring the enhanced sensitivity to challenging tumour types. With a computational footprint of only 96.9 GFLOPs (representing 37.5% of YOYOLOv8x'sFLOPs) and utilizing 12.6 million parameters, a mere 18.5% of YOYOLOv8's parameters, MK-YOLOv8 delivers high efficiency with reduced resource demands. Also, it trained on the Br35H dataset (801 images) to guarantee the model's robustness and generalization; it achieved a mAP of 98.6% at IoU (0.50). The suggested model operates at 62 frames per second (FPS) and is suited for real-time clinical processes. These developments establish MK-YOLOv8 as an innovative framework, overcoming challenges in tiny tumour identification and providing a generalizable, adaptable, and precise detection approach for brain tumour diagnostics in clinical settings.

A novel transfer learning framework for non-uniform conductivity estimation with limited data in personalized brain stimulation.

Kubota Y, Kodera S, Hirata A

pubmed logopapersMay 6 2025
<i>Objective</i>. Personalized transcranial magnetic stimulation (TMS) requires individualized head models that incorporate non-uniform conductivity to enable target-specific stimulation. Accurately estimating non-uniform conductivity in individualized head models remains a challenge due to the difficulty of obtaining precise ground truth data. To address this issue, we have developed a novel transfer learning-based approach for automatically estimating non-uniform conductivity in a human head model with limited data.<i>Approach</i>. The proposed method complements the limitations of the previous conductivity network (CondNet) and improves the conductivity estimation accuracy. This method generates a segmentation model from T1- and T2-weighted magnetic resonance images, which is then used for conductivity estimation via transfer learning. To enhance the model's representation capability, a Transformer was incorporated into the segmentation model, while the conductivity estimation model was designed using a combination of Attention Gates and Residual Connections, enabling efficient learning even with a small amount of data.<i>Main results</i>. The proposed method was evaluated using 1494 images, demonstrating a 2.4% improvement in segmentation accuracy and a 29.1% increase in conductivity estimation accuracy compared with CondNet. Furthermore, the proposed method achieved superior conductivity estimation accuracy even with only three training cases, outperforming CondNet, which was trained on an adequate number of cases. The conductivity maps generated by the proposed method yielded better results in brain electrical field simulations than CondNet.<i>Significance</i>. These findings demonstrate the high utility of the proposed method in brain electrical field simulations and suggest its potential applicability to other medical image analysis tasks and simulations.

Brain connectome gradient dysfunction in patients with end-stage renal disease and its association with clinical phenotype and cognitive deficits.

Li P, Li N, Ren L, Yang YP, Zhu XY, Yuan HJ, Luo ZY, Mu JY, Wang W, Zhang M

pubmed logopapersMay 6 2025
A cortical hierarchical architecture is vital for encoding and integrating sensorimotor-to-cognitive information. However, whether this gradient structure is disrupted in end-stage renal disease (ESRD) patients and how this disruption provides valuable information for potential clinical symptoms remain unknown. We prospectively enrolled 77 ESRD patients and 48 healthy controls. Using resting-state functional magnetic resonance imaging, we studied ESRD-related hierarchical alterations. The Neurosynth platform and machine-learning models with 10-fold cross-validation were applied. ESRD patients had abnormal gradient metrics in core regions of the default mode network, sensorimotor network, and frontoparietal network. These changes correlated with creatinine, depression, and cognitive functions. A logistic regression classifier achieved a maximum performance of 84.8% accuracy and 0.901 area under the ROC curve (AUC). Our results highlight hierarchical imbalances in ESRD patients that correlate with diverse cognitive deficits, which may be used as potential neuroimaging markers for clinical symptoms.

Molecular mechanisms explaining sex-specific functional connectivity changes in chronic insomnia disorder.

Yu L, Shen Z, Wei W, Dou Z, Luo Y, Hu D, Lin W, Zhao G, Hong X, Yu S

pubmed logopapersMay 6 2025
This study investigates the hypothesis that chronic insomnia disorder (CID) is characterized by sex-specific changes in resting-state functional connectivity (rsFC), with certain molecular mechanisms potentially influencing CID's pathophysiology by altering rsFC in relevant networks. Utilizing a resting-state functional magnetic resonance imaging (fMRI) dataset of 395 participants, including 199 CID patients and 196 healthy controls, we examined sex-specific rsFC effects, particularly in the default mode network (DMN) and five insomnia-genetically vulnerable regions of interest (ROIs). By integrating gene expression data from the Allen Human Brain Atlas, we identified genes linked to these sex-specific rsFC alterations and conducted enrichment analysis to uncover underlying molecular mechanisms. Additionally, we simulated the impact of sex differences in rsFC with different sex compositions in our dataset and employed machine learning classifiers to distinguish CID from healthy controls based on sex-specific rsFC data. We identified both shared and sex-specific rsFC changes in the DMN and the five genetically vulnerable ROIs, with gene expression variations associated with these sex-specific connectivity differences. Enrichment analysis highlighted genes involved in synaptic signaling, ion channels, and immune function as potential contributors to CID pathophysiology through their influence on connectivity. Furthermore, our findings demonstrate that different sex compositions significantly affect study outcomes and higher diagnostic performance in sex-specific rsFC data than combined sex. This study uncovered both shared and sex-specific connectivity alterations in CID, providing molecular insights into its pathophysiology and suggesting considering sex differences in future fMRI-based diagnostic and treatment strategies.
Page 7 of 875 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.