Deep learning-based image enhancement for improved black blood imaging in brain metastasis.

Authors

Oh G,Paik S,Jo SW,Choi HJ,Yoo RE,Choi SH

Affiliations (8)

  • Seoul National University College of Medicine, Seoul, Republic of Korea.
  • Department of Radiology, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea.
  • Department of Radiology, CHA University Bundang Medical Center, Seongnam-si, Republic of Korea.
  • Seoul National University College of Medicine, Seoul, Republic of Korea. [email protected].
  • Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea. [email protected].
  • Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
  • Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
  • School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.

Abstract

To evaluate the utility of a deep learning (DL)-based image enhancement for improving the image quality and diagnostic performance of 3D contrast-enhanced T1-weighted black blood (BB) MR imaging for brain metastases. This retrospective study included 126 patients with and 121 patients without brain metastasis who underwent 3-T MRI examinations. Commercially available DL-based MR image enhancement software was utilized for image post-processing. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of enhancing lesions were measured. For qualitative assessment and diagnostic performance evaluation, two radiologists graded the overall image quality, noise, and artifacts of each image and the conspicuity of visible lesions. The Wilcoxon signed-rank test and regression analyses with generalized estimating equations (GEEs) were used for statistical analysis. For MR images that were not previously processed using other DL-based methods, SNR and CNR were higher in the DL-enhanced images than in the standard images (438.3 vs. 661.1, p < 0.01; 173.9 vs. 223.5, p < 0.01). Overall image quality and noise were improved in the DL images (p < 0.01, average score-5 proportion 38% vs. 65%; p < 0.01, 43% vs. 74%), whereas artifacts did not significantly differ (p ≥ 0.07). Sensitivity was increased after post-processing from 79 to 86% (p = 0.02), especially for lesions smaller than 5 mm (69 to 78%, p = 0.03), and changes in specificity (p = 0.24) and average false-positive (FP) count (p = 0.18) were not significant. DL image enhancement improves the image quality and diagnostic performance of 3D contrast-enhanced T1-weighted BB MR imaging for the detection of small brain metastases. Question Can deep learning (DL)-based image enhancement improve the image quality and diagnostic performance of 3D contrast-enhanced T1-weighted black blood (BB) MR imaging for brain metastases? Findings DL-based image enhancement improved image quality of thin slice BB MR images and sensitivity for brain metastasis, particularly for lesions smaller than 5 mm. Clinical relevance DL-based image enhancement on BB images may assist in the accurate diagnosis of brain metastasis by achieving better sensitivity while maintaining comparable specificity.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.