Sort by:
Page 7 of 45448 results

Generalizability, robustness, and correction bias of segmentations of thoracic organs at risk in CT images.

Guérendel C, Petrychenko L, Chupetlovska K, Bodalal Z, Beets-Tan RGH, Benson S

pubmed logopapersJul 1 2025
This study aims to assess and compare two state-of-the-art deep learning approaches for segmenting four thoracic organs at risk (OAR)-the esophagus, trachea, heart, and aorta-in CT images in the context of radiotherapy planning. We compare a multi-organ segmentation approach and the fusion of multiple single-organ models, each dedicated to one OAR. All were trained using nnU-Net with the default parameters and the full-resolution configuration. We evaluate their robustness with adversarial perturbations, and their generalizability on external datasets, and explore potential biases introduced by expert corrections compared to fully manual delineations. The two approaches show excellent performance with an average Dice score of 0.928 for the multi-class setting and 0.930 when fusing the four single-organ models. The evaluation of external datasets and common procedural adversarial noise demonstrates the good generalizability of these models. In addition, expert corrections of both models show significant bias to the original automated segmentation. The average Dice score between the two corrections is 0.93, ranging from 0.88 for the trachea to 0.98 for the heart. Both approaches demonstrate excellent performance and generalizability in segmenting four thoracic OARs, potentially improving efficiency in radiotherapy planning. However, the multi-organ setting proves advantageous for its efficiency, requiring less training time and fewer resources, making it a preferable choice for this task. Moreover, corrections of AI segmentation by clinicians may lead to biases in the results of AI approaches. A test set, manually annotated, should be used to assess the performance of such methods. Question While manual delineation of thoracic organs at risk is labor-intensive, prone to errors, and time-consuming, evaluation of AI models performing this task lacks robustness. Findings The deep-learning model using the nnU-Net framework showed excellent performance, generalizability, and robustness in segmenting thoracic organs in CT, enhancing radiotherapy planning efficiency. Clinical relevance Automatic segmentation of thoracic organs at risk can save clinicians time without compromising the quality of the delineations, and extensive evaluation across diverse settings demonstrates the potential of integrating such models into clinical practice.

Feasibility/clinical utility of half-Fourier single-shot turbo spin echo imaging combined with deep learning reconstruction in gynecologic magnetic resonance imaging.

Kirita M, Himoto Y, Kurata Y, Kido A, Fujimoto K, Abe H, Matsumoto Y, Harada K, Morita S, Yamaguchi K, Nickel D, Mandai M, Nakamoto Y

pubmed logopapersJul 1 2025
When antispasmodics are unavailable, the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER; called BLADE by Siemens Healthineers) or half Fourier single-shot turbo spin echo (HASTE) is clinically used in gynecologic MRI. However, their imaging qualities are limited compared to Turbo Spin Echo (TSE) with antispasmodics. Even with antispasmodics, TSE can be artifact-affected, necessitating a rapid backup sequence. This study aimed to investigate the utility of HASTE with deep learning reconstruction and variable flip angle evolution (iHASTE) compared to conventional sequences with and without antispasmodics. This retrospective study included MRI scans without antispasmodics for 79 patients who underwent iHASTE, HASTE, and BLADE and MRI scans with antispasmodics for 79 case-control matched patients who underwent TSE. Three radiologists qualitatively evaluated image quality, robustness to artifacts, tissue contrast, and uterine lesion margins. Tissue contrast was also quantitatively evaluated. Quantitative evaluations revealed that iHASTE exhibited significantly superior tissue contrast to HASTE and BLADE. Qualitative evaluations indicated that iHASTE outperformed HASTE in overall quality. Two of three radiologists judged iHASTE to be significantly superior to BLADE, while two of three judged TSE to be significantly superior to iHASTE. iHASTE demonstrated greater robustness to artifacts than both BLADE and TSE. Lesion margins in iHASTE had lower scores than BLADE and TSE. iHASTE is a viable clinical option in patients undergoing gynecologic MRI with anti-spasmodics. iHASTE may also be considered as a useful add-on sequence in patients undergoing MRI with antispasmodics.

Predicting progression-free survival in sarcoma using MRI-based automatic segmentation models and radiomics nomograms: a preliminary multicenter study.

Zhu N, Niu F, Fan S, Meng X, Hu Y, Han J, Wang Z

pubmed logopapersJul 1 2025
Some sarcomas are highly malignant, associated with high recurrence despite treatment. This multicenter study aimed to develop and validate a radiomics signature to estimate sarcoma progression-free survival (PFS). The study retrospectively enrolled 202 consecutive patients with pathologically diagnosed sarcoma, who had pre-treatment axial fat-suppressed T2-weighted images (FS-T2WI), and included them in the ROI-Net model for training. Among them, 120 patients were included in the radiomics analysis, all of whom had pre-treatment axial T1-weighted and transverse FS-T2WI images, and were randomly divided into a development group (n = 96) and a validation group (n = 24). In the development cohort, Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression was used to develop the radiomics features for PFS prediction. By combining significant clinical features with radiomics features, a nomogram was constructed using Cox regression. The proposed ROI-Net framework achieved a Dice coefficient of 0.820 (0.791-0.848). The radiomics signature based on 21 features could distinguish high-risk patients with poor PFS. Univariate Cox analysis revealed that peritumoral edema, metastases, and the radiomics score were associated with poor PFS and were included in the construction of the nomogram. The Radiomics-T1WI-Clinical model exhibited the best performance, with AUC values of 0.947, 0.907, and 0.924 at 300 days, 600 days, and 900 days, respectively. The proposed ROI-Net framework demonstrated high consistency between its segmentation results and expert annotations. The radiomics features and the combined nomogram have the potential to aid in predicting PFS for patients with sarcoma.

Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.

Famularo S, Maino C, Milana F, Ardito F, Rompianesi G, Ciulli C, Conci S, Gallotti A, La Barba G, Romano M, De Angelis M, Patauner S, Penzo C, De Rose AM, Marescaux J, Diana M, Ippolito D, Frena A, Boccia L, Zanus G, Ercolani G, Maestri M, Grazi GL, Ruzzenente A, Romano F, Troisi RI, Giuliante F, Donadon M, Torzilli G

pubmed logopapersJul 1 2025
No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms. Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM). Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %). The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.

Accuracy of machine learning models for pre-diagnosis and diagnosis of pancreatic ductal adenocarcinoma in contrast-CT images: a systematic review and meta-analysis.

Lopes Costa GL, Tasca Petroski G, Machado LG, Eulalio Santos B, de Oliveira Ramos F, Feuerschuette Neto LM, De Luca Canto G

pubmed logopapersJul 1 2025
To evaluate the diagnostic ability and methodological quality of ML models in detecting Pancreatic Ductal Adenocarcinoma (PDAC) in Contrast CT images. Included studies assessed adults diagnosed with PDAC, confirmed by histopathology. Metrics of tests were interpreted by ML algorithms. Studies provided data on sensitivity and specificity. Studies that did not meet the inclusion criteria, segmentation-focused studies, multiple classifiers or non-diagnostic studies were excluded. PubMed, Cochrane Central Register of Controlled Trials, and Embase were searched without restrictions. Risk of bias was assessed using QUADAS-2, methodological quality was evaluated using Radiomics Quality Score (RQS) and a Checklist for AI in Medical Imaging (CLAIM). Bivariate random-effects models were used for meta-analysis of sensitivity and specificity, I<sup>2</sup> values and subgroup analysis used to assess heterogeneity. Nine studies were included and 12,788 participants were evaluated, of which 3,997 were included in the meta-analysis. AI models based on CT scans showed an accuracy of 88.7% (IC 95%, 87.7%-89.7%), sensitivity of 87.9% (95% CI, 82.9%-91.6%), and specificity of 92.2% (95% CI, 86.8%-95.5%). The average score of six radiomics studies was 17.83 RQS points. Nine ML methods had an average CLAIM score of 30.55 points. Our study is the first to quantitatively interpret various independent research, offering insights for clinical application. Despite favorable sensitivity and specificity results, the studies were of low quality, limiting definitive conclusions. Further research is necessary to validate these models before widespread adoption.

Identifying threshold of CT-defined muscle loss after radiotherapy for survival in oral cavity cancer using machine learning.

Lee J, Lin JB, Lin WC, Jan YT, Leu YS, Chen YJ, Wu KP

pubmed logopapersJul 1 2025
Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity squamous cell carcinoma (OCSCC). However, the threshold of muscle loss remains unclear. This study aimed to utilize explainable artificial intelligence to identify the threshold of muscle loss associated with survival in OCSCC. We enrolled 1087 patients with OCSCC treated with surgery and adjuvant radiotherapy at two tertiary centers (660 in the derivation cohort and 427 in the external validation cohort). Skeletal muscle index (SMI) was measured using pre- and post-radiotherapy computed tomography (CT) at the C3 vertebral level. Random forest (RF), eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost) models were developed to predict all-cause mortality, and their performances were evaluated using the area under the curve (AUC). Muscle loss threshold was identified using the SHapley Additive exPlanations (SHAP) method and validated using Cox regression analysis. In the external validation cohort, the RF, XGBoost, and CatBoost models achieved favorable performance in predicting all-cause mortality (AUC: 0.898, 0.859, and 0.842). The SHAP method demonstrated that SMI change after radiotherapy was the most important feature for predicting all-cause mortality and consistently identified SMI loss ≥ 4.2% as the threshold in all three models. In multivariable analysis, SMI loss ≥ 4.2% was independently associated with increased all-cause mortality risk in both cohorts (derivation cohort: hazard ratio: 6.66, p < 0.001; external validation cohort: hazard ratio: 8.46, p < 0.001). This study can assist clinicians in identifying patients with considerable muscle loss after treatment and guide interventions to improve muscle mass. Question Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity cancer; however, the threshold of muscle loss remains unclear. Findings Explainable artificial intelligence identified muscle loss ≥ 4.2% as the threshold of increased all-cause mortality risk in both derivation and external validation cohorts. Clinical Relevance Muscle loss ≥ 4.2% may be the optimal threshold for survival in patients who receive adjuvant radiotherapy for oral cavity cancer. This threshold can guide clinicians in improving muscle mass after radiotherapy.

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

Embryonic cranial cartilage defects in the Fgfr3<sup>Y367C</sup> <sup>/+</sup> mouse model of achondroplasia.

Motch Perrine SM, Sapkota N, Kawasaki K, Zhang Y, Chen DZ, Kawasaki M, Durham EL, Heuzé Y, Legeai-Mallet L, Richtsmeier JT

pubmed logopapersJul 1 2025
Achondroplasia, the most common chondrodysplasia in humans, is caused by one of two gain of function mutations localized in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) leading to constitutive activation of FGFR3 and subsequent growth plate cartilage and bone defects. Phenotypic features of achondroplasia include macrocephaly with frontal bossing, midface hypoplasia, disproportionate shortening of the extremities, brachydactyly with trident configuration of the hand, and bowed legs. The condition is defined primarily on postnatal effects on bone and cartilage, and embryonic development of tissues in affected individuals is not well studied. Using the Fgfr3<sup>Y367C/+</sup> mouse model of achondroplasia, we investigated the developing chondrocranium and Meckel's cartilage (MC) at embryonic days (E)14.5 and E16.5. Sparse hand annotations of chondrocranial and MC cartilages visualized in phosphotungstic acid enhanced three-dimensional (3D) micro-computed tomography (microCT) images were used to train our automatic deep learning-based 3D segmentation model and produce 3D isosurfaces of the chondrocranium and MC. Using 3D coordinates of landmarks measured on the 3D isosurfaces, we quantified differences in the chondrocranium and MC of Fgfr3<sup>Y367C/+</sup> mice relative to those of their unaffected littermates. Statistically significant differences in morphology and growth of the chondrocranium and MC were found, indicating direct effects of this Fgfr3 mutation on embryonic cranial and pharyngeal cartilages, which in turn can secondarily affect cranial dermal bone development. Our results support the suggestion that early therapeutic intervention during cartilage formation may lessen the effects of this condition.

Scout-Dose-TCM: Direct and Prospective Scout-Based Estimation of Personalized Organ Doses from Tube Current Modulated CT Exams

Maria Jose Medrano, Sen Wang, Liyan Sun, Abdullah-Al-Zubaer Imran, Jennie Cao, Grant Stevens, Justin Ruey Tse, Adam S. Wang

arxiv logopreprintJun 30 2025
This study proposes Scout-Dose-TCM for direct, prospective estimation of organ-level doses under tube current modulation (TCM) and compares its performance to two established methods. We analyzed contrast-enhanced chest-abdomen-pelvis CT scans from 130 adults (120 kVp, TCM). Reference doses for six organs (lungs, kidneys, liver, pancreas, bladder, spleen) were calculated using MC-GPU and TotalSegmentator. Based on these, we trained Scout-Dose-TCM, a deep learning model that predicts organ doses corresponding to discrete cosine transform (DCT) basis functions, enabling real-time estimates for any TCM profile. The model combines a feature learning module that extracts contextual information from lateral and frontal scouts and scan range with a dose learning module that output DCT-based dose estimates. A customized loss function incorporated the DCT formulation during training. For comparison, we implemented size-specific dose estimation per AAPM TG 204 (Global CTDIvol) and its organ-level TCM-adapted version (Organ CTDIvol). A 5-fold cross-validation assessed generalizability by comparing mean absolute percentage dose errors and r-squared correlations with benchmark doses. Average absolute percentage errors were 13% (Global CTDIvol), 9% (Organ CTDIvol), and 7% (Scout-Dose-TCM), with bladder showing the largest discrepancies (15%, 13%, and 9%). Statistical tests confirmed Scout-Dose-TCM significantly reduced errors vs. Global CTDIvol across most organs and improved over Organ CTDIvol for the liver, bladder, and pancreas. It also achieved higher r-squared values, indicating stronger agreement with Monte Carlo benchmarks. Scout-Dose-TCM outperformed Global CTDIvol and was comparable to or better than Organ CTDIvol, without requiring organ segmentations at inference, demonstrating its promise as a tool for prospective organ-level dose estimation in CT.

Artificial Intelligence-assisted Pixel-level Lung (APL) Scoring for Fast and Accurate Quantification in Ultra-short Echo-time MRI

Bowen Xin, Rohan Hickey, Tamara Blake, Jin Jin, Claire E Wainwright, Thomas Benkert, Alto Stemmer, Peter Sly, David Coman, Jason Dowling

arxiv logopreprintJun 30 2025
Lung magnetic resonance imaging (MRI) with ultrashort echo-time (UTE) represents a recent breakthrough in lung structure imaging, providing image resolution and quality comparable to computed tomography (CT). Due to the absence of ionising radiation, MRI is often preferred over CT in paediatric diseases such as cystic fibrosis (CF), one of the most common genetic disorders in Caucasians. To assess structural lung damage in CF imaging, CT scoring systems provide valuable quantitative insights for disease diagnosis and progression. However, few quantitative scoring systems are available in structural lung MRI (e.g., UTE-MRI). To provide fast and accurate quantification in lung MRI, we investigated the feasibility of novel Artificial intelligence-assisted Pixel-level Lung (APL) scoring for CF. APL scoring consists of 5 stages, including 1) image loading, 2) AI lung segmentation, 3) lung-bounded slice sampling, 4) pixel-level annotation, and 5) quantification and reporting. The results shows that our APL scoring took 8.2 minutes per subject, which was more than twice as fast as the previous grid-level scoring. Additionally, our pixel-level scoring was statistically more accurate (p=0.021), while strongly correlating with grid-level scoring (R=0.973, p=5.85e-9). This tool has great potential to streamline the workflow of UTE lung MRI in clinical settings, and be extended to other structural lung MRI sequences (e.g., BLADE MRI), and for other lung diseases (e.g., bronchopulmonary dysplasia).
Page 7 of 45448 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.