Sort by:
Page 7 of 90900 results

Clinical Decision Support for Alzheimer's: Challenges in Generalizable Data-Driven Approach.

Gao T, Madanian S, Templeton J, Merkin A

pubmed logopapersAug 7 2025
This paper reviews the current research on Alzheimer's disease and the use of deep learning, particularly 3D-convolutional neural networks (3D-CNN), in analyzing brain images. It presents a predictive model based on MRI and clinical data from the ADNI dataset, showing that deep learning can improve diagnosis accuracy and sensitivity. We also discuss potential applications in biomarker discovery, disease progression prediction, and personalised treatment planning, highlighting the ability to identify sensitive features for early diagnosis.

HiFi-Mamba: Dual-Stream W-Laplacian Enhanced Mamba for High-Fidelity MRI Reconstruction

Hongli Chen, Pengcheng Fang, Yuxia Chen, Yingxuan Ren, Jing Hao, Fangfang Tang, Xiaohao Cai, Shanshan Shan, Feng Liu

arxiv logopreprintAug 7 2025
Reconstructing high-fidelity MR images from undersampled k-space data remains a challenging problem in MRI. While Mamba variants for vision tasks offer promising long-range modeling capabilities with linear-time complexity, their direct application to MRI reconstruction inherits two key limitations: (1) insensitivity to high-frequency anatomical details; and (2) reliance on redundant multi-directional scanning. To address these limitations, we introduce High-Fidelity Mamba (HiFi-Mamba), a novel dual-stream Mamba-based architecture comprising stacked W-Laplacian (WL) and HiFi-Mamba blocks. Specifically, the WL block performs fidelity-preserving spectral decoupling, producing complementary low- and high-frequency streams. This separation enables the HiFi-Mamba block to focus on low-frequency structures, enhancing global feature modeling. Concurrently, the HiFi-Mamba block selectively integrates high-frequency features through adaptive state-space modulation, preserving comprehensive spectral details. To eliminate the scanning redundancy, the HiFi-Mamba block adopts a streamlined unidirectional traversal strategy that preserves long-range modeling capability with improved computational efficiency. Extensive experiments on standard MRI reconstruction benchmarks demonstrate that HiFi-Mamba consistently outperforms state-of-the-art CNN-based, Transformer-based, and other Mamba-based models in reconstruction accuracy while maintaining a compact and efficient model design.

Few-Shot Deployment of Pretrained MRI Transformers in Brain Imaging Tasks

Mengyu Li, Guoyao Shen, Chad W. Farris, Xin Zhang

arxiv logopreprintAug 7 2025
Machine learning using transformers has shown great potential in medical imaging, but its real-world applicability remains limited due to the scarcity of annotated data. In this study, we propose a practical framework for the few-shot deployment of pretrained MRI transformers in diverse brain imaging tasks. By utilizing the Masked Autoencoder (MAE) pretraining strategy on a large-scale, multi-cohort brain MRI dataset comprising over 31 million slices, we obtain highly transferable latent representations that generalize well across tasks and datasets. For high-level tasks such as classification, a frozen MAE encoder combined with a lightweight linear head achieves state-of-the-art accuracy in MRI sequence identification with minimal supervision. For low-level tasks such as segmentation, we propose MAE-FUnet, a hybrid architecture that fuses multiscale CNN features with pretrained MAE embeddings. This model consistently outperforms other strong baselines in both skull stripping and multi-class anatomical segmentation under data-limited conditions. With extensive quantitative and qualitative evaluations, our framework demonstrates efficiency, stability, and scalability, suggesting its suitability for low-resource clinical environments and broader neuroimaging applications.

Towards Real-Time Detection of Fatty Liver Disease in Ultrasound Imaging: Challenges and Opportunities.

Alshagathrh FM, Schneider J, Househ MS

pubmed logopapersAug 7 2025
This study presents an AI framework for real-time NAFLD detection using ultrasound imaging, addressing operator dependency, imaging variability, and class imbalance. It integrates CNNs with machine learning classifiers and applies preprocessing techniques, including normalization and GAN-based augmentation, to enhance prediction for underrepresented disease stages. Grad-CAM provides visual explanations to support clinical interpretation. Trained on 10,352 annotated images from multiple Saudi centers, the framework achieved 98.9% accuracy and an AUC of 0.99, outperforming baseline CNNs by 12.4% and improving sensitivity for advanced fibrosis and subtle features. Future work will extend multi-class classification, validate performance across settings, and integrate with clinical systems.

UltimateSynth: MRI Physics for Pan-Contrast AI

Adams, R., Huynh, K. M., Zhao, W., Hu, S., Lyu, W., Ahmad, S., Ma, D., Yap, P.-T.

biorxiv logopreprintAug 7 2025
Magnetic resonance imaging (MRI) is commonly used in healthcare for its ability to generate diverse tissue contrasts without ionizing radiation. However, this flexibility complicates downstream analysis, as computational tools are often tailored to specific types of MRI and lack generalizability across the full spectrum of scans used in healthcare. Here, we introduce a versatile framework for the development and validation of AI models that can robustly process and analyze the full spectrum of scans achievable with MRI, enabling model deployment across scanner models, scan sequences, and age groups. Core to our framework is UltimateSynth, a technology that combines tissue physiology and MR physics in synthesizing realistic images across a comprehensive range of meaningful contrasts. This pan-contrast capability bolsters the AI development life cycle through efficient data labeling, generalizable model training, and thorough performance benchmarking. We showcase the effectiveness of UltimateSynth by training an off-the-shelf U-Net to generalize anatomical segmentation across any MR contrast. The U-Net yields highly robust tissue volume estimates, with variability under 4% across 150,000 unique-contrast images, 3.8% across 2,000+ low-field 0.3T scans, and 3.5% across 8,000+ images spanning the human lifespan from ages 0 to 100.

MM2CT: MR-to-CT translation for multi-modal image fusion with mamba

Chaohui Gong, Zhiying Wu, Zisheng Huang, Gaofeng Meng, Zhen Lei, Hongbin Liu

arxiv logopreprintAug 7 2025
Magnetic resonance (MR)-to-computed tomography (CT) translation offers significant advantages, including the elimination of radiation exposure associated with CT scans and the mitigation of imaging artifacts caused by patient motion. The existing approaches are based on single-modality MR-to-CT translation, with limited research exploring multimodal fusion. To address this limitation, we introduce Multi-modal MR to CT (MM2CT) translation method by leveraging multimodal T1- and T2-weighted MRI data, an innovative Mamba-based framework for multi-modal medical image synthesis. Mamba effectively overcomes the limited local receptive field in CNNs and the high computational complexity issues in Transformers. MM2CT leverages this advantage to maintain long-range dependencies modeling capabilities while achieving multi-modal MR feature integration. Additionally, we incorporate a dynamic local convolution module and a dynamic enhancement module to improve MRI-to-CT synthesis. The experiments on a public pelvis dataset demonstrate that MM2CT achieves state-of-the-art performance in terms of Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR). Our code is publicly available at https://github.com/Gots-ch/MM2CT.

Sparse transformer and multipath decision tree: a novel approach for efficient brain tumor classification.

Li P, Jin Y, Wang M, Liu F

pubmed logopapersAug 7 2025
Early classification of brain tumors is the key to effective treatment. With advances in medical imaging technology, automated classification algorithms face challenges due to tumor diversity. Although Swin Transformer is effective in handling high-resolution images, it encounters difficulties with small datasets and high computational complexity. This study introduces SparseSwinMDT, a novel model that combines sparse token representation with multipath decision trees. Experimental results show that SparseSwinMDT achieves an accuracy of 99.47% in brain tumor classification, significantly outperforming existing methods while reducing computation time, making it particularly suitable for resource-constrained medical environments.

TCSAFormer: Efficient Vision Transformer with Token Compression and Sparse Attention for Medical Image Segmentation

Zunhui Xia, Hongxing Li, Libin Lan

arxiv logopreprintAug 6 2025
In recent years, transformer-based methods have achieved remarkable progress in medical image segmentation due to their superior ability to capture long-range dependencies. However, these methods typically suffer from two major limitations. First, their computational complexity scales quadratically with the input sequences. Second, the feed-forward network (FFN) modules in vanilla Transformers typically rely on fully connected layers, which limits models' ability to capture local contextual information and multiscale features critical for precise semantic segmentation. To address these issues, we propose an efficient medical image segmentation network, named TCSAFormer. The proposed TCSAFormer adopts two key ideas. First, it incorporates a Compressed Attention (CA) module, which combines token compression and pixel-level sparse attention to dynamically focus on the most relevant key-value pairs for each query. This is achieved by pruning globally irrelevant tokens and merging redundant ones, significantly reducing computational complexity while enhancing the model's ability to capture relationships between tokens. Second, it introduces a Dual-Branch Feed-Forward Network (DBFFN) module as a replacement for the standard FFN to capture local contextual features and multiscale information, thereby strengthening the model's feature representation capability. We conduct extensive experiments on three publicly available medical image segmentation datasets: ISIC-2018, CVC-ClinicDB, and Synapse, to evaluate the segmentation performance of TCSAFormer. Experimental results demonstrate that TCSAFormer achieves superior performance compared to existing state-of-the-art (SOTA) methods, while maintaining lower computational overhead, thus achieving an optimal trade-off between efficiency and accuracy.

Multi-modal machine learning classifier for idiopathic pulmonary fibrosis predicts mortality in interstitial lung diseases.

Callahan SJ, Scholand MB, Kalra A, Muelly M, Reicher JJ

pubmed logopapersAug 6 2025
Interstitial lung disease (ILD) prognostication incorporates clinical history, pulmonary function testing (PFTs), and chest CT pattern classifications. The machine learning classifier, Fibresolve, includes a model to help detect CT patterns associated with idiopathic pulmonary fibrosis (IPF). We developed and tested new Fibresolve software to predict outcomes in patients with ILD. Fibresolve uses a transformer (ViT) algorithm to analyze CT imaging that additionally embeds PFTs, age, and sex to produce an overall risk score. The model was trained to optimize risk score in a dataset of 602 subjects designed to maximize predictive performance via Cox proportional hazards. Validation was completed with the first hazard ratio assessment dataset, then tested in a second datatest set. 61 % of 220 subjects died in the validation set's study period, whereas 40 % of the 407 subjects died in the second dataset's. The validation dataset's mortality hazard ratio (HR) was 3.66 (95 % CI: 2.09-6.42) and 4.66 (CI: 2.47-8.77) for the moderate and high-risk groups. In the second dataset, Fibresolve was a predictor of mortality at initial visit, with a HR of 2.79 (1.73-4.49) and 5.82 (3.53-9.60) in the moderate and high-risk groups. Similar predictive performance was seen at follow-up visits, as well as with changes in the Fibresolve scores over sequential visits. Fibresolve predicts mortality by automatically assessing combined CT, PFTs, age, and sex into a ViT model. The new software algorithm affords accurate prognostication and demonstrates the ability to detect clinical changes over time.

A Comprehensive Framework for Uncertainty Quantification of Voxel-wise Supervised Models in IVIM MRI

Nicola Casali, Alessandro Brusaferri, Giuseppe Baselli, Stefano Fumagalli, Edoardo Micotti, Gianluigi Forloni, Riaz Hussein, Giovanna Rizzo, Alfonso Mastropietro

arxiv logopreprintAug 6 2025
Accurate estimation of intravoxel incoherent motion (IVIM) parameters from diffusion-weighted MRI remains challenging due to the ill-posed nature of the inverse problem and high sensitivity to noise, particularly in the perfusion compartment. In this work, we propose a probabilistic deep learning framework based on Deep Ensembles (DE) of Mixture Density Networks (MDNs), enabling estimation of total predictive uncertainty and decomposition into aleatoric (AU) and epistemic (EU) components. The method was benchmarked against non probabilistic neural networks, a Bayesian fitting approach and a probabilistic network with single Gaussian parametrization. Supervised training was performed on synthetic data, and evaluation was conducted on both simulated and two in vivo datasets. The reliability of the quantified uncertainties was assessed using calibration curves, output distribution sharpness, and the Continuous Ranked Probability Score (CRPS). MDNs produced more calibrated and sharper predictive distributions for the D and f parameters, although slight overconfidence was observed in D*. The Robust Coefficient of Variation (RCV) indicated smoother in vivo estimates for D* with MDNs compared to Gaussian model. Despite the training data covering the expected physiological range, elevated EU in vivo suggests a mismatch with real acquisition conditions, highlighting the importance of incorporating EU, which was allowed by DE. Overall, we present a comprehensive framework for IVIM fitting with uncertainty quantification, which enables the identification and interpretation of unreliable estimates. The proposed approach can also be adopted for fitting other physical models through appropriate architectural and simulation adjustments.
Page 7 of 90900 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.