Sort by:
Page 68 of 3463455 results

Hessian-based lightweight neural network for brain vessel segmentation on a minimal training dataset

Alexandra Bernadotte, Elfimov Nikita, Mikhail Shutov, Ivan Menshikov

arxiv logopreprintAug 21 2025
Accurate segmentation of blood vessels in brain magnetic resonance angiography (MRA) is essential for successful surgical procedures, such as aneurysm repair or bypass surgery. Currently, annotation is primarily performed through manual segmentation or classical methods, such as the Frangi filter, which often lack sufficient accuracy. Neural networks have emerged as powerful tools for medical image segmentation, but their development depends on well-annotated training datasets. However, there is a notable lack of publicly available MRA datasets with detailed brain vessel annotations. To address this gap, we propose a novel semi-supervised learning lightweight neural network with Hessian matrices on board for 3D segmentation of complex structures such as tubular structures, which we named HessNet. The solution is a Hessian-based neural network with only 6000 parameters. HessNet can run on the CPU and significantly reduces the resource requirements for training neural networks. The accuracy of vessel segmentation on a minimal training dataset reaches state-of-the-art results. It helps us create a large, semi-manually annotated brain vessel dataset of brain MRA images based on the IXI dataset (annotated 200 images). Annotation was performed by three experts under the supervision of three neurovascular surgeons after applying HessNet. It provides high accuracy of vessel segmentation and allows experts to focus only on the most complex important cases. The dataset is available at https://git.scinalytics.com/terilat/VesselDatasetPartly.

Task-Generalized Adaptive Cross-Domain Learning for Multimodal Image Fusion

Mengyu Wang, Zhenyu Liu, Kun Li, Yu Wang, Yuwei Wang, Yanyan Wei, Fei Wang

arxiv logopreprintAug 21 2025
Multimodal Image Fusion (MMIF) aims to integrate complementary information from different imaging modalities to overcome the limitations of individual sensors. It enhances image quality and facilitates downstream applications such as remote sensing, medical diagnostics, and robotics. Despite significant advancements, current MMIF methods still face challenges such as modality misalignment, high-frequency detail destruction, and task-specific limitations. To address these challenges, we propose AdaSFFuse, a novel framework for task-generalized MMIF through adaptive cross-domain co-fusion learning. AdaSFFuse introduces two key innovations: the Adaptive Approximate Wavelet Transform (AdaWAT) for frequency decoupling, and the Spatial-Frequency Mamba Blocks for efficient multimodal fusion. AdaWAT adaptively separates the high- and low-frequency components of multimodal images from different scenes, enabling fine-grained extraction and alignment of distinct frequency characteristics for each modality. The Spatial-Frequency Mamba Blocks facilitate cross-domain fusion in both spatial and frequency domains, enhancing this process. These blocks dynamically adjust through learnable mappings to ensure robust fusion across diverse modalities. By combining these components, AdaSFFuse improves the alignment and integration of multimodal features, reduces frequency loss, and preserves critical details. Extensive experiments on four MMIF tasks -- Infrared-Visible Image Fusion (IVF), Multi-Focus Image Fusion (MFF), Multi-Exposure Image Fusion (MEF), and Medical Image Fusion (MIF) -- demonstrate AdaSFFuse's superior fusion performance, ensuring both low computational cost and a compact network, offering a strong balance between performance and efficiency. The code will be publicly available at https://github.com/Zhen-yu-Liu/AdaSFFuse.

DoSReMC: Domain Shift Resilient Mammography Classification using Batch Normalization Adaptation

Uğurcan Akyüz, Deniz Katircioglu-Öztürk, Emre K. Süslü, Burhan Keleş, Mete C. Kaya, Gamze Durhan, Meltem G. Akpınar, Figen B. Demirkazık, Gözde B. Akar

arxiv logopreprintAug 21 2025
Numerous deep learning-based solutions have been developed for the automatic recognition of breast cancer using mammography images. However, their performance often declines when applied to data from different domains, primarily due to domain shift - the variation in data distributions between source and target domains. This performance drop limits the safe and equitable deployment of AI in real-world clinical settings. In this study, we present DoSReMC (Domain Shift Resilient Mammography Classification), a batch normalization (BN) adaptation framework designed to enhance cross-domain generalization without retraining the entire model. Using three large-scale full-field digital mammography (FFDM) datasets - including HCTP, a newly introduced, pathologically confirmed in-house dataset - we conduct a systematic cross-domain evaluation with convolutional neural networks (CNNs). Our results demonstrate that BN layers are a primary source of domain dependence: they perform effectively when training and testing occur within the same domain, and they significantly impair model generalization under domain shift. DoSReMC addresses this limitation by fine-tuning only the BN and fully connected (FC) layers, while preserving pretrained convolutional filters. We further integrate this targeted adaptation with an adversarial training scheme, yielding additional improvements in cross-domain generalizability. DoSReMC can be readily incorporated into existing AI pipelines and applied across diverse clinical environments, providing a practical pathway toward more robust and generalizable mammography classification systems.

Explainable Knowledge Distillation for Efficient Medical Image Classification

Aqib Nazir Mir, Danish Raza Rizvi

arxiv logopreprintAug 21 2025
This study comprehensively explores knowledge distillation frameworks for COVID-19 and lung cancer classification using chest X-ray (CXR) images. We employ high-capacity teacher models, including VGG19 and lightweight Vision Transformers (Visformer-S and AutoFormer-V2-T), to guide the training of a compact, hardware-aware student model derived from the OFA-595 supernet. Our approach leverages hybrid supervision, combining ground-truth labels with teacher models' soft targets to balance accuracy and computational efficiency. We validate our models on two benchmark datasets: COVID-QU-Ex and LCS25000, covering multiple classes, including COVID-19, healthy, non-COVID pneumonia, lung, and colon cancer. To interpret the spatial focus of the models, we employ Score-CAM-based visualizations, which provide insight into the reasoning process of both teacher and student networks. The results demonstrate that the distilled student model maintains high classification performance with significantly reduced parameters and inference time, making it an optimal choice in resource-constrained clinical environments. Our work underscores the importance of combining model efficiency with explainability for practical, trustworthy medical AI solutions.

Zero-shot Volumetric CT Super-Resolution using 3D Gaussian Splatting with Upsampled 2D X-ray Projection Priors

Jeonghyun Noh, Hyun-Jic Oh, Byungju Chae, Won-Ki Jeong

arxiv logopreprintAug 21 2025
Computed tomography (CT) is widely used in clinical diagnosis, but acquiring high-resolution (HR) CT is limited by radiation exposure risks. Deep learning-based super-resolution (SR) methods have been studied to reconstruct HR from low-resolution (LR) inputs. While supervised SR approaches have shown promising results, they require large-scale paired LR-HR volume datasets that are often unavailable. In contrast, zero-shot methods alleviate the need for paired data by using only a single LR input, but typically struggle to recover fine anatomical details due to limited internal information. To overcome these, we propose a novel zero-shot 3D CT SR framework that leverages upsampled 2D X-ray projection priors generated by a diffusion model. Exploiting the abundance of HR 2D X-ray data, we train a diffusion model on large-scale 2D X-ray projection and introduce a per-projection adaptive sampling strategy. It selects the generative process for each projection, thus providing HR projections as strong external priors for 3D CT reconstruction. These projections serve as inputs to 3D Gaussian splatting for reconstructing a 3D CT volume. Furthermore, we propose negative alpha blending (NAB-GS) that allows negative values in Gaussian density representation. NAB-GS enables residual learning between LR and diffusion-based projections, thereby enhancing high-frequency structure reconstruction. Experiments on two datasets show that our method achieves superior quantitative and qualitative results for 3D CT SR.

TPA: Temporal Prompt Alignment for Fetal Congenital Heart Defect Classification

Darya Taratynova, Alya Almsouti, Beknur Kalmakhanbet, Numan Saeed, Mohammad Yaqub

arxiv logopreprintAug 21 2025
Congenital heart defect (CHD) detection in ultrasound videos is hindered by image noise and probe positioning variability. While automated methods can reduce operator dependence, current machine learning approaches often neglect temporal information, limit themselves to binary classification, and do not account for prediction calibration. We propose Temporal Prompt Alignment (TPA), a method leveraging foundation image-text model and prompt-aware contrastive learning to classify fetal CHD on cardiac ultrasound videos. TPA extracts features from each frame of video subclips using an image encoder, aggregates them with a trainable temporal extractor to capture heart motion, and aligns the video representation with class-specific text prompts via a margin-hinge contrastive loss. To enhance calibration for clinical reliability, we introduce a Conditional Variational Autoencoder Style Modulation (CVAESM) module, which learns a latent style vector to modulate embeddings and quantifies classification uncertainty. Evaluated on a private dataset for CHD detection and on a large public dataset, EchoNet-Dynamic, for systolic dysfunction, TPA achieves state-of-the-art macro F1 scores of 85.40% for CHD diagnosis, while also reducing expected calibration error by 5.38% and adaptive ECE by 6.8%. On EchoNet-Dynamic's three-class task, it boosts macro F1 by 4.73% (from 53.89% to 58.62%). Temporal Prompt Alignment (TPA) is a framework for fetal congenital heart defect (CHD) classification in ultrasound videos that integrates temporal modeling, prompt-aware contrastive learning, and uncertainty quantification.

Ascending Aortic Dimensions and Body Size: Allometric Scaling, Normative Values, and Prognostic Performance.

Tavolinejad H, Beeche C, Dib MJ, Pourmussa B, Damrauer SM, DePaolo J, Azzo JD, Salman O, Duda J, Gee J, Kun S, Witschey WR, Chirinos JA

pubmed logopapersAug 21 2025
Ascending aortic (AscAo) dimensions partially depend on body size. Ratiometric (linear) indexing of AscAo dimensions to height and body surface area (BSA) are currently recommended, but it is unclear whether these allometric relationships are indeed linear. This study aimed to evaluate allometric relations, normative values, and the prognostic performance of AscAo dimension indices. We studied UK Biobank (UKB) (n = 49,271) and Penn Medicine BioBank (PMBB) (n = 8,426) participants. A convolutional neural network was used to segment the thoracic aorta from available magnetic resonance and computed tomography thoracic images. Normal allometric exponents of AscAo dimensions were derived from log-log models among healthy reference subgroups. Prognostic associations of AscAo dimensions were assessed with the use of Cox models. Among reference subgroups of both UKB (n = 11,310; age 52 ± 8 years; 37% male) and PMBB (n = 799; age 50 ± 16 years; 41% male), diameter/height, diameter/BSA, and area/BSA exhibited highly nonlinear relationships. In contrast, the allometric exponent of the area/height index was close to unity (UKB: 1.04; PMBB: 1.13). Accordingly, the linear ratio of area/height index did not exhibit residual associations with height (UKB: R<sup>2</sup> = 0.04 [P = 0.411]; PMBB: R<sup>2</sup> = 0.08 [P = 0.759]). Across quintiles of height and BSA, area/height was the only ratiometric index that consistently classified aortic dilation, whereas all other indices systematically underestimated or overestimated AscAo dilation at the extremes of body size. Area/height was robustly associated with thoracic aorta events in the UKB (HR: 3.73; P < 0.001) and the PMBB (HR: 1.83; P < 0.001). Among AscAo indices, area/height was allometrically correct, did not exhibit residual associations with body size, and was consistently associated with adverse events.

Predicting Radiation Pneumonitis Integrating Clinical Information, Medical Text, and 2.5D Deep Learning Features in Lung Cancer.

Wang W, Ren M, Ren J, Dang J, Zhao X, Li C, Wang Y, Li G

pubmed logopapersAug 21 2025
To construct a prediction model for radiation pneumonitis (RP) in lung cancer patients based on clinical information, medical text, and 2.5D deep learning (DL) features. A total of 356 patients with lung cancer from the Heping Campus of the First Hospital of China Medical University were randomly divided at a 7:3 ratio into training and validation cohorts, and 238 patients from 3 other centers were included in the testing cohort for assessing model generalizability. We used the term frequency-inverse document frequency method to generate numerical vectors from computed tomography (CT) report texts. The CT and radiation therapy dose slices demonstrating the largest lung region of interest across the coronal and transverse planes were considered as the central slice; moreover, 3 slices above and below the central slice were selected to create comprehensive 2.5D data. We extracted DL features via DenseNet121, DenseNet201, and Twins-SVT and integrated them via multi-instance learning (MIL) fusion. The performances of the 2D and 3D DL models were also compared with the performance of the 2.5D MIL model. Finally, RP prediction models based on clinical information, medical text, and 2.5D DL features were constructed, validated, and tested. The 2.5D MIL model based on CT was significantly better than the 2D and 3D DL models in the training, validation, and test cohorts. The 2.5D MIL model based on radiation therapy dose was considered to be the optimal model in the test1 cohort, whereas the 2D model was considered to be the optimal model in the training, validation, and test3 cohorts, with the 3D model being the optimal model in the test2 cohort. A combined model achieved Area Under Curve values of 0.964, 0.877, 0.868, 0.884, and 0.849 in the training, validation, test1, test2, and test3 cohorts, respectively. We propose an RP prediction model that integrates clinical information, medical text, and 2.5D MIL features, which provides new ideas for predicting the side effects of radiation therapy.

Initial Recurrence Risk Stratification of Papillary Thyroid Cancer Based on Intratumoral and Peritumoral Dual Energy CT Radiomics.

Zhou Y, Xu Y, Si Y, Wu F, Xu X

pubmed logopapersAug 21 2025
This study aims to evaluate the potential of Dual-Energy Computed Tomography (DECT)-based radiomics in preoperative risk stratification for the prediction of initial recurrence in Papillary Thyroid Carcinoma (PTC). The retrospective analysis included 236 PTC cases (165 in the training cohort, 71 in the validation cohort) collected between July 2020 and June 2021. Tumor segmentation was carried out in both intratumoral and peritumoral areas (1 mm inner and outer to the tumor boundary). Three regionspecific rad-scores were developed (rad-score [VOI<sup>whole</sup>], rad-score [VOI<sup>outer layer</sup>], and rad-score [VOI<sup>inner layer</sup>]), respectively. Three radiomics models incorporating these rad-scores and additional risk factors were compared to a clinical model alone. The optimal radiomics model was presented as a nomogram. Rad-scores from peritumoral regions (VOI<sup>outer layer</sup> and VOI<sup>inner layer</sup>) outperformed the intratumoral rad-score (VOI<sup>whole</sup>). All radiomics models surpassed the clinical model, with peritumoral-based models (radiomics models 2 and 3) outperforming the intratumoral-based model (radiomics model 1). The top-performing nomogram, which included tumor size, tumor site, and rad-score (VOI<sup>inner layer</sup>), achieved an Area Under the Curve (AUC) of 0.877 in the training cohort and 0.876 in the validation cohort. The nomogram demonstrated good calibration, clinical utility, and stability. DECT-based intratumoral and peritumoral radiomics advance PTC initial recurrence risk prediction, providing clinical radiology with precise predictive tools. Further work is needed to refine the model and enhance its clinical application. Radiomics analysis of DECT, particularly in peritumoral regions, offers valuable predictive information for assessing the risk of initial recurrence in PTC.

CT-based machine learning model integrating intra- and peri-tumoral radiomics features for predicting occult lymph node metastasis in peripheral lung cancer.

Lu X, Liu F, E J, Cai X, Yang J, Wang X, Zhang Y, Sun B, Liu Y

pubmed logopapersAug 21 2025
Accurate preoperative assessment of occult lymph node metastasis (OLNM) plays a crucial role in informing therapeutic decision-making for lung cancer patients. Computed tomography (CT) is the most widely used imaging modality for preoperative work-up. The aim of this study was to develop and validate a CT-based machine learning model integrating intra-and peri-tumoral features to predict OLNM in lung cancer patients. Eligible patients with peripheral lung cancer confirmed by radical surgical excision with systematic lymphadenectomy were retrospectively recruited from January 2019 to December 2021. 1688 radiomics features were obtained from each manually segmented VOI which was composed of gross tumor volume (GTV) covering the boundary of entire tumor and three peritumoral volumes (PTV3, PTV6 and PTV9) that capture the region outside the tumor. A clinical-radiomics model incorporating radiomics signature, independent clinical factors and CT semantic features was established via multivariable logistic regression analysis and presented as a nomogram. Model performance was evaluated by discrimination, calibration, and clinical utility. Overall, 591 patients were recruited in the training cohort and 253 in the validation cohort. The radiomics signature of PTV9 showed superior diagnostic performance compared to PTV3 and PTV6 models. Integrating GPTV radiomics signature (incorporating Rad-score of GTV and PTV9) with clinical risk factor of serum CEA levels and CT imaging features of lobulation sign and tumor-pleura relationship demonstrated favorable accuracy in predicting OLNM in the training cohort (AUC, 0.819; 95% CI: 0.780-0.857) and validation cohort (AUC, 0.801; 95% CI: 0.741-0.860). The predictive performance of the clinical-radiomics model demonstrated statistically significant superiority over that of the clinical model in both cohorts (all p < 0.05). The clinical-radiomics model was able to serve as a noninvasive preoperative prediction tool for personalized risk assessment of OLNM in peripheral lung cancer patients.
Page 68 of 3463455 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.