Sort by:
Page 68 of 94933 results

SWDL: Stratum-Wise Difference Learning with Deep Laplacian Pyramid for Semi-Supervised 3D Intracranial Hemorrhage Segmentation

Cheng Wang, Siqi Chen, Donghua Mi, Yang Chen, Yudong Zhang, Yinsheng Li

arxiv logopreprintJun 12 2025
Recent advances in medical imaging have established deep learning-based segmentation as the predominant approach, though it typically requires large amounts of manually annotated data. However, obtaining annotations for intracranial hemorrhage (ICH) remains particularly challenging due to the tedious and costly labeling process. Semi-supervised learning (SSL) has emerged as a promising solution to address the scarcity of labeled data, especially in volumetric medical image segmentation. Unlike conventional SSL methods that primarily focus on high-confidence pseudo-labels or consistency regularization, we propose SWDL-Net, a novel SSL framework that exploits the complementary advantages of Laplacian pyramid and deep convolutional upsampling. The Laplacian pyramid excels at edge sharpening, while deep convolutions enhance detail precision through flexible feature mapping. Our framework achieves superior segmentation of lesion details and boundaries through a difference learning mechanism that effectively integrates these complementary approaches. Extensive experiments on a 271-case ICH dataset and public benchmarks demonstrate that SWDL-Net outperforms current state-of-the-art methods in scenarios with only 2% labeled data. Additional evaluations on the publicly available Brain Hemorrhage Segmentation Dataset (BHSD) with 5% labeled data further confirm the superiority of our approach. Code and data have been released at https://github.com/SIAT-CT-LAB/SWDL.

Automated Segmentation of Thoracic Aortic Lumen and Vessel Wall on 3D Bright- and Black-Blood MRI using nnU-Net.

Cesario M, Littlewood SJ, Nadel J, Fletcher TJ, Fotaki A, Castillo-Passi C, Hajhosseiny R, Pouliopoulos J, Jabbour A, Olivero R, Rodríguez-Palomares J, Kooi ME, Prieto C, Botnar RM

pubmed logopapersJun 11 2025
Magnetic resonance angiography (MRA) is an important tool for aortic assessment in several cardiovascular diseases. Assessment of MRA images relies on manual segmentation; a time-intensive process that is subject to operator variability. We aimed to optimize and validate two deep-learning models for automatic segmentation of the aortic lumen and vessel wall in high-resolution ECG-triggered free-breathing respiratory motion-corrected 3D bright- and black-blood MRA images. Manual segmentation, serving as the ground truth, was performed on 25 bright-blood and 15 black-blood 3D MRA image sets acquired with the iT2PrepIR-BOOST sequence (1.5T) in thoracic aortopathy patients. The training was performed with nnU-Net for bright-blood (lumen) and black-blood image sets (lumen and vessel wall). Training consisted of a 70:20:10% training: validation: testing split. Inference was run on datasets (single vendor) from different centres (UK, Spain, and Australia), sequences (iT2PrepIR-BOOST, T2 prepared CMRA, and TWIST MRA), acquired resolutions (from 0.9 mm<sup>3</sup> to 3 mm<sup>3</sup>), and field strengths (0.55T, 1.5T, and 3T). Predictive measurements comprised Dice Similarity Coefficient (DSC), and Intersection over Union (IoU). Postprocessing (3D slicer) included centreline extraction, diameter measurement, and curved planar reformatting (CPR). The optimal configuration was the 3D U-Net. Bright blood segmentation at 1.5T on iT2PrepIR-BOOST datasets (1.3 and 1.8 mm<sup>3</sup>) and 3D CMRA datasets (0.9 mm<sup>3</sup>) resulted in DSC ≥ 0.96 and IoU ≥ 0.92. For bright-blood segmentation on 3D CMRA at 0.55T, the nnUNet achieved DSC and IoU scores of 0.93 and 0.88 at 1.5 mm³, and 0.68 and 0.52 at 3.0 mm³, respectively. DSC and IoU scores of 0.89 and 0.82 were obtained for CMRA image sets (1 mm<sup>3</sup>) at 1.5T (Barcelona dataset). DSC and IoU score of the BRnnUNet model were 0.90 and 0.82 respectively for the contrast-enhanced dataset (TWIST MRA). Lumen segmentation on black blood 1.5T iT2PrepIR-BOOST image sets achieved DSC ≥ 0.95 and IoU ≥ 0.90, and vessel wall segmentation resulted in DSC ≥ 0.80 and IoU ≥ 0.67. Automated centreline tracking, diameter measurement and CPR were successfully implemented in all subjects. Automated aortic lumen and wall segmentation on 3D bright- and black-blood image sets demonstrated excellent agreement with ground truth. This technique demonstrates a fast and comprehensive assessment of aortic morphology with great potential for future clinical application in various cardiovascular diseases.

Slide-free surface histology enables rapid colonic polyp interpretation across specialties and foundation AI

Yong, A., Husna, N., Tan, K. H., Manek, G., Sim, R., Loi, R., Lee, O., Tang, S., Soon, G., Chan, D., Liang, K.

medrxiv logopreprintJun 11 2025
Colonoscopy is a mainstay of colorectal cancer screening and has helped to lower cancer incidence and mortality. The resection of polyps during colonoscopy is critical for tissue diagnosis and prevention of colorectal cancer, albeit resulting in increased resource requirements and expense. Discarding resected benign polyps without sending for histopathological processing and confirmatory diagnosis, known as the resect and discard strategy, could enhance efficiency but is not commonly practiced due to endoscopists predominant preference for pathological confirmation. The inaccessibility of histopathology from unprocessed resected tissue hampers endoscopic decisions. We show that intraprocedural fibre-optic microscopy with ultraviolet-C surface excitation (FUSE) of polyps post-resection enables rapid diagnosis, potentially complementing endoscopic interpretation and incorporating pathologist oversight. In a clinical study of 28 patients, slide-free FUSE microscopy of freshly resected polyps yielded mucosal views that greatly magnified the surface patterns observed on endoscopy and revealed previously unavailable histopathological signatures. We term this new cross-specialty readout surface histology. In blinded interpretations of 42 polyps (19 training, 23 reading) by endoscopists and pathologists of varying experience, surface histology differentiated normal/benign, low-grade dysplasia, and high-grade dysplasia and cancer, with 100% performance in classifying high/low risk. This FUSE dataset was also successfully interpreted by foundation AI models pretrained on histopathology slides, illustrating a new potential for these models to not only expedite conventional pathology tasks but also autonomously provide instant expert feedback during procedures that typically lack pathologists. Surface histology readouts during colonoscopy promise to empower endoscopist decisions and broadly enhance confidence and participation in resect and discard. One Sentence SummaryRapid microscopy of resected polyps during colonoscopy yielded accurate diagnoses, promising to enhance colorectal screening.

AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study

Yi, J., Patel, K., Miller, R. J., Marcinkiewicz, A. M., Shanbhag, A., Hijazi, W., Dharmavaram, N., Lemley, M., Zhou, J., Zhang, W., Liang, J. X., Ramirez, G., Builoff, V., Slipczuk, L., Travin, M., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R., Al-Mallah, M., Ruddy, T. D., Einstein, A. J., Feher, A., Miller, E. J., Acampa, W., Knight, S., Le, V., Mason, S., Calsavara, V. F., Chareonthaitawee, P., Wopperer, S., Kwan, A. C., Wang, L., Berman, D. S., Dey, D., Di Carli, M. F., Slomka, P.

medrxiv logopreprintJun 11 2025
BackgroundHepatic steatosis (HS) is a common cardiometabolic risk factor frequently present but under- diagnosed in patients with suspected or known coronary artery disease. We used artificial intelligence (AI) to automatically quantify hepatic tissue measures for identifying HS from CT attenuation correction (CTAC) scans during myocardial perfusion imaging (MPI) and evaluate their added prognostic value for all-cause mortality prediction. MethodsThis study included 27039 consecutive patients [57% male] with MPI scans from nine sites. We used an AI model to segment liver and spleen on low dose CTAC scans and quantify the liver measures, and the difference of liver minus spleen (LmS) measures. HS was defined as mean liver attenuation < 40 Hounsfield units (HU) or LmS attenuation < -10 HU. Additionally, we used seven sites to develop an AI liver risk index (LIRI) for comprehensive hepatic assessment by integrating the hepatic measures and two external sites to validate its improved prognostic value and generalizability for all-cause mortality prediction over HS. FindingsMedian (interquartile range [IQR]) age was 67 [58, 75] years and body mass index (BMI) was 29.5 [25.5, 34.7] kg/m2, with diabetes in 8950 (33%) patients. The algorithm identified HS in 6579 (24%) patients. During median [IQR] follow-up of 3.58 [1.86, 5.15] years, 4836 (18%) patients died. HS was associated with increased mortality risk overall (adjusted hazard ratio (HR): 1.14 [1.05, 1.24], p=0.0016) and in subpopulations. LIRI provided higher prognostic value than HS after adjustments overall (adjusted HR 1.5 [1.32, 1.69], p<0.0001 vs HR 1.16 [1.02, 1.31], p=0.0204) and in subpopulations. InterpretationsAI-based hepatic measures automatically identify HS from CTAC scans in patients undergoing MPI without additional radiation dose or physician interaction. Integrated liver assessment combining multiple hepatic imaging measures improved risk stratification for all-cause mortality. FundingNational Heart, Lung, and Blood Institute/National Institutes of Health. Research in context Evidence before this studyExisting studies show that fully automated hepatic quantification analysis from chest computed tomography (CT) scans is feasible. While hepatic measures show significant potential for improving risk stratification and patient management, CT attenuation correction (CTAC) scans from patients undergoing myocardial perfusion imaging (MPI) have rarely been utilized for concurrent and automated volumetric hepatic analysis beyond its current utilization for attenuation correction and coronary artery calcium burden assessment. We conducted a literature review on PubMed and Google Scholar on April 1st, 2025, using the following keywords: ("liver" OR "hepatic") AND ("quantification" OR "measure") AND ("risk stratification" OR "survival analysis" OR "prognosis" OR "prognostic prediction") AND ("CT" OR "computed tomography"). Previous studies have established approaches for the identification of hepatic steatosis (HS) and its prognostic value in various small- scale cohorts using either invasive biopsy or non-invasive imaging approaches. However, CT-based non- invasive imaging, existing research predominantly focuses on manual region-of-interest (ROI)-based hepatic quantification from selected CT slices or on identifying hepatic steatosis without comprehensive prognostic assessment in large-scale and multi-site cohorts, which hinders the association evaluation of hepatic steatosis for risk stratification in clinical routine with less precise estimates, weak statistical reliability, and limited subgroup analysis to assess bias effects. No existing studies investigated the prognostic value of hepatic steatosis measured in consecutive patients undergoing MPI. These patients usually present with multiple cardiovascular risk factors such as hypertension, dyslipidemia, diabetes and family history of coronary disease. Whether hepatic measures could provide added prognostic value over existing cardiometabolic factors is unknown. Furthermore, despite the diverse hepatic measures on CT in existing literature, integrated AI-based assessment has not been investigated before though it may improve the risk stratification further over HS. Lastly, previous research relied on dedicated CT scans performed for screening purposes. CTAC scans obtained routinely with MPI had never been utilized for automated HS detection and prognostic evaluation, despite being readily available at no additional cost or radiation exposure. Added value of this studyIn this multi-center (nine sites) international (three countries) study of 27039 consecutive patients undergoing myocardial perfusion imaging (MPI) with PET or SPECT, we used an innovative artificial intelligence (AI)- based approach for automatically segmenting the entire liver and spleen volumes from low-dose ungated CT attenuation correction (CTAC) scans acquired during MPI, followed by the identification of hepatic steatosis. We evaluated the added prognostic value of several key hepatic metrics--liver measures (mean attenuation, coefficient of variation (CoV), entropy, and standard deviation), and similar measures for the difference of liver minus spleen (LmS)--derived from volumetric quantification of CTAC scans with adjustment for existing clinical and MPI variables. A HS imaging criterion (HSIC: a patient has moderate or severe hepatic steatosis if the mean liver attenuation is < 40 Hounsfield unit (HU) or the difference of liver mean attenuation and spleen mean attenuation is < -10 HU) was used to detect HS. These hepatic metrics were assessed for their ability to predict all-cause mortality in a large-scale and multi-center patient cohort. Additionally, we developed and validated an eXtreme Gradient Boosting decision tree model for integrated liver assessment and risk stratification by combining the hepatic metrics with the demographic variables to derive a liver risk index (LIRI). Our results demonstrated strong associations between the hepatic metrics and all-cause mortality, even after adjustment for clinical variables, myocardial perfusion, and atherosclerosis biomarkers. Our results revealed significant differences in the association of HS with mortality in different sex, age, and race subpopulations. Similar differences were also observed in various chronic disease subpopulations such as obese and diabetic subpopulations. These results highlighted the modifying effects of various patient characteristics, partially accounting for the inconsistent association observed in existing studies. Compared with individual hepatic measures, LIRI showed significant improvement compared to HSIC-based HS in mortality prediction in external testing. All these demonstrate the feasibility of HS detection and integrated liver assessment from cardiac low-dose CT scans from MPI, which is also expected to apply for generic chest CT scans which have coverage of liver and spleen while prior studies used dedicated abdominal CT scans for such purposes. Implications of all the available evidenceRoutine point-of-care analysis of hepatic quantification can be seamlessly integrated into all MPI using CTAC scans to noninvasively identify HS at no additional cost or radiation exposure. The automatically derived hepatic metrics enhance risk stratification by providing additional prognostic value beyond existing clinical and imaging factors, and the LIRI enables comprehensive assessment of liver and further improves risk stratification and patient management.

Towards more reliable prostate cancer detection: Incorporating clinical data and uncertainty in MRI deep learning.

Taguelmimt K, Andrade-Miranda G, Harb H, Thanh TT, Dang HP, Malavaud B, Bert J

pubmed logopapersJun 11 2025
Prostate cancer (PCa) is one of the most common cancers among men, and artificial intelligence (AI) is emerging as a promising tool to enhance its diagnosis. This work proposes a classification approach for PCa cases using deep learning techniques. We conducted a comparison between unimodal models based either on biparametric magnetic resonance imaging (bpMRI) or clinical data (such as prostate-specific antigen levels, prostate volume, and age). We also introduced a bimodal model that simultaneously integrates imaging and clinical data to address the limitations of unimodal approaches. Furthermore, we propose a framework that not only detects the presence of PCa but also evaluates the uncertainty associated with the predictions. This approach makes it possible to identify highly confident predictions and distinguish them from those characterized by uncertainty, thereby enhancing the reliability and applicability of automated medical decisions in clinical practice. The results show that the bimodal model significantly improves performance, with an area under the curve (AUC) reaching 0.82±0.03, a sensitivity of 0.73±0.04, while maintaining high specificity. Uncertainty analysis revealed that the bimodal model produces more confident predictions, with an uncertainty accuracy of 0.85, surpassing the imaging-only model (which is 0.71). This increase in reliability is crucial in a clinical context, where precise and dependable diagnostic decisions are essential for patient care. The integration of clinical data with imaging data in a bimodal model not only improves diagnostic performance but also strengthens the reliability of predictions, making this approach particularly suitable for clinical use.

Non-invasive prediction of nuclear grade in renal cell carcinoma using CT-Based radiomics: a systematic review and meta-analysis.

Salimi M, Hajikarimloo B, Vadipour P, Abdolizadeh A, Fayedeh F, Seifi S

pubmed logopapersJun 11 2025
Renal cell carcinoma (RCC) represents the most prevalent malignant neoplasm of the kidney, with a rising global incidence. Tumor nuclear grade is a crucial prognostic factor, guiding treatment decisions, but current histopathological grading via biopsy is invasive and prone to sampling errors. This study aims to assess the diagnostic performance and quality of CT-based radiomics for preoperatively predicting RCC nuclear grade. A comprehensive search was conducted across PubMed, Scopus, Embase, and Web of Science to identify relevant studies up until 19 April 2025. Quality was assessed using the QUADAS-2 and METRICS tools. A bivariate random-effects meta-analysis was performed to evaluate model performance, including sensitivity, specificity, and Area Under the Curve (AUC). Results from separate validation cohorts were pooled, and clinical and combined models were analyzed separately in distinct analyses. A total of 26 studies comprising 1993 individuals in 10 external and 16 internal validation cohorts were included. Meta-analysis of radiomics models showed pooled AUC of 0.88, sensitivity of 0.78, and specificity of 0.82. Clinical and combined (clinical-radiomics) models showed AUCs of 0.73 and 0.86, respectively. QUADAS-2 revealed significant risk of bias in the Index Test and Flow and Timing domains. METRICS scores ranged from 49.7 to 88.4%, with an average of 66.65%, indicating overall good quality, though gaps in some aspects of study methodologies were identified. This study suggests that radiomics models show great potential and diagnostic accuracy for non-invasive preoperative nuclear grading of RCC. However, challenges related to generalizability and clinical applicability remain, as further research with standardized methodologies, external validation, and larger cohorts is needed to enhance their reliability and integration into routine clinical practice.

Enhancing Pulmonary Disease Prediction Using Large Language Models With Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study Based on Radiology Report.

Li R, Mao S, Zhu C, Yang Y, Tan C, Li L, Mu X, Liu H, Yang Y

pubmed logopapersJun 11 2025
The rapid advancements in natural language processing, particularly the development of large language models (LLMs), have opened new avenues for managing complex clinical text data. However, the inherent complexity and specificity of medical texts present significant challenges for the practical application of prompt engineering in diagnostic tasks. This paper explores LLMs with new prompt engineering technology to enhance model interpretability and improve the prediction performance of pulmonary disease based on a traditional deep learning model. A retrospective dataset including 2965 chest CT radiology reports was constructed. The reports were from 4 cohorts, namely, healthy individuals and patients with pulmonary tuberculosis, lung cancer, and pneumonia. Then, a novel prompt engineering strategy that integrates feature summarization (F-Sum), chain of thought (CoT) reasoning, and a hybrid retrieval-augmented generation (RAG) framework was proposed. A feature summarization approach, leveraging term frequency-inverse document frequency (TF-IDF) and K-means clustering, was used to extract and distill key radiological findings related to 3 diseases. Simultaneously, the hybrid RAG framework combined dense and sparse vector representations to enhance LLMs' comprehension of disease-related text. In total, 3 state-of-the-art LLMs, GLM-4-Plus, GLM-4-air (Zhipu AI), and GPT-4o (OpenAI), were integrated with the prompt strategy to evaluate the efficiency in recognizing pneumonia, tuberculosis, and lung cancer. The traditional deep learning model, BERT (Bidirectional Encoder Representations from Transformers), was also compared to assess the superiority of LLMs. Finally, the proposed method was tested on an external validation dataset consisted of 343 chest computed tomography (CT) report from another hospital. Compared with BERT-based prediction model and various other prompt engineering techniques, our method with GLM-4-Plus achieved the best performance on test dataset, attaining an F1-score of 0.89 and accuracy of 0.89. On the external validation dataset, F1-score (0.86) and accuracy (0.92) of the proposed method with GPT-4o were the highest. Compared to the popular strategy with manually selected typical samples (few-shot) and CoT designed by doctors (F1-score=0.83 and accuracy=0.83), the proposed method that summarized disease characteristics (F-Sum) based on LLM and automatically generated CoT performed better (F1-score=0.89 and accuracy=0.90). Although the BERT-based model got similar results on the test dataset (F1-score=0.85 and accuracy=0.88), its predictive performance significantly decreased on the external validation set (F1-score=0.48 and accuracy=0.78). These findings highlight the potential of LLMs to revolutionize pulmonary disease prediction, particularly in resource-constrained settings, by surpassing traditional models in both accuracy and flexibility. The proposed prompt engineering strategy not only improves predictive performance but also enhances the adaptability of LLMs in complex medical contexts, offering a promising tool for advancing disease diagnosis and clinical decision-making.

A fully open AI foundation model applied to chest radiography.

Ma D, Pang J, Gotway MB, Liang J

pubmed logopapersJun 11 2025
Chest radiography frequently serves as baseline imaging for most lung diseases<sup>1</sup>. Deep learning has great potential for automating the interpretation of chest radiography<sup>2</sup>. However, existing chest radiographic deep learning models are limited in diagnostic scope, generalizability, adaptability, robustness and extensibility. To overcome these limitations, we have developed Ark<sup>+</sup>, a foundation model applied to chest radiography and pretrained by cyclically accruing and reusing the knowledge from heterogeneous expert labels in numerous datasets. Ark<sup>+</sup> excels in diagnosing thoracic diseases. It expands the diagnostic scope and addresses potential misdiagnosis. It can adapt to evolving diagnostic needs and respond to novel diseases. It can learn rare conditions from a few samples and transfer to new diagnostic settings without training. It tolerates data biases and long-tailed distributions, and it supports federated learning to preserve privacy. All codes and pretrained models have been released, so that Ark<sup>+</sup> is open for fine-tuning, local adaptation and improvement. It is extensible to several modalities. Thus, it is a foundation model for medical imaging. The exceptional capabilities of Ark<sup>+</sup> stem from our insight: aggregating various datasets diversifies the patient populations and accrues knowledge from many experts to yield unprecedented performance while reducing annotation costs<sup>3</sup>. The development of Ark<sup>+</sup> reveals that open models trained by accruing and reusing knowledge from heterogeneous expert annotations with a multitude of public (big or small) datasets can surpass the performance of proprietary models trained on large data. We hope that our findings will inspire more researchers to share code and datasets or federate privacy-preserving data to create open foundation models with diverse, global expertise and patient populations, thus accelerating open science and democratizing AI for medicine.

Non-enhanced CT deep learning model for differentiating lung adenocarcinoma from tuberculoma: a multicenter diagnostic study.

Zhang G, Shang L, Li S, Zhang J, Zhang Z, Zhang X, Qian R, Yang K, Li X, Liu Y, Wu Y, Pu H, Cao Y, Man Q, Kong W

pubmed logopapersJun 11 2025
To develop and validate a deep learning model based on three-dimensional features (DL_3D) for distinguishing lung adenocarcinoma (LUAD) from tuberculoma (TBM). A total of 1160 patients were collected from three hospitals. A vision transformer network-based DL_3D model was trained, and its performance in differentiating LUAD from TBM was evaluated using validation and external test sets. The performance of the DL_3D model was compared with that of two-dimensional features (DL_2D), radiomics, and six radiologists. Diagnostic performance was assessed using the area under the receiver operating characteristic curves (AUCs) analysis. The study included 840 patients in the training set (mean age, 54.8 years [range, 19-86 years]; 514 men), 210 patients in the validation set (mean age, 54.3 years [range, 18-86 years]; 128 men), and 110 patients in the external test set (mean age, 54.7 years [range, 22-88 years]; 51 men). In both the validation and external test sets, DL_3D exhibited excellent diagnostic performance (AUCs, 0.895 and 0.913, respectively). In the test set, the DL_3D model showed better performance (AUC, 0.913; 95% CI: 0.854, 0.973) than the DL_2D (AUC, 0.804, 95% CI: 0.722, 0.886; p < 0.001), radiomics (AUC, 0.676, 95% CI: 0.574, 0.777; p < 0.001), and six radiologists (AUCs, 0.692 to 0.810; p value range < 0.001-0.035). The DL_3D model outperforms expert radiologists in distinguishing LUAD from TBM. Question Can a deep learning model perform in differentiating LUAD from TBM on non-enhanced CT images? Findings The DL_3D model demonstrated higher diagnostic performance than the DL_2D model, radiomics model, and six radiologists in differentiating LUAD and TBM. Clinical relevance The DL_3D model could accurately differentiate between LUAD and TBM, which can help clinicians make personalized treatment plans.

Diagnostic accuracy of machine learning-based magnetic resonance imaging models in breast cancer classification: a systematic review and meta-analysis.

Zhang J, Wu Q, Lei P, Zhu X, Li B

pubmed logopapersJun 11 2025
This meta-analysis evaluates the diagnostic accuracy of machine learning (ML)-based magnetic resonance imaging (MRI) models in distinguishing benign from malignant breast lesions and explores factors influencing their performance. A systematic search of PubMed, Embase, Cochrane Library, Scopus, and Web of Science identified 12 eligible studies (from 3,739 records) up to August 2024. Data were extracted to calculate sensitivity, specificity, and area under the curve (AUC) using bivariate models in R 4.4.1. Study quality was assessed via QUADAS-2. Pooled sensitivity and specificity were 0.86 (95% CI: 0.82-0.90) and 0.82 (95% CI: 0.78-0.86), respectively, with an overall AUC of 0.90 (95% CI: 0.85-0.90). Diagnostic odds ratio (DOR) was 39.11 (95% CI: 25.04-53.17). Support vector machine (SVM) classifiers outperformed Naive Bayes, with higher sensitivity (0.88 vs. 0.86) and specificity (0.82 vs. 0.78). Heterogeneity was primarily attributed to MRI equipment (P = 0.037). ML-based MRI models demonstrate high diagnostic accuracy for breast cancer classification, with pooled sensitivity of 0.86 (95% CI: 0.82-0.90), specificity of 0.82 (95% CI: 0.78-0.86), and AUC of 0.90 (95% CI: 0.85-0.90). These results support their clinical utility as screening and diagnostic adjuncts, while highlighting the need for standardized protocols to improve generalizability.
Page 68 of 94933 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.