Sort by:
Page 62 of 3533530 results

TopoImages: Incorporating Local Topology Encoding into Deep Learning Models for Medical Image Classification

Pengfei Gu, Hongxiao Wang, Yejia Zhang, Huimin Li, Chaoli Wang, Danny Chen

arxiv logopreprintAug 3 2025
Topological structures in image data, such as connected components and loops, play a crucial role in understanding image content (e.g., biomedical objects). % Despite remarkable successes of numerous image processing methods that rely on appearance information, these methods often lack sensitivity to topological structures when used in general deep learning (DL) frameworks. % In this paper, we introduce a new general approach, called TopoImages (for Topology Images), which computes a new representation of input images by encoding local topology of patches. % In TopoImages, we leverage persistent homology (PH) to encode geometric and topological features inherent in image patches. % Our main objective is to capture topological information in local patches of an input image into a vectorized form. % Specifically, we first compute persistence diagrams (PDs) of the patches, % and then vectorize and arrange these PDs into long vectors for pixels of the patches. % The resulting multi-channel image-form representation is called a TopoImage. % TopoImages offers a new perspective for data analysis. % To garner diverse and significant topological features in image data and ensure a more comprehensive and enriched representation, we further generate multiple TopoImages of the input image using various filtration functions, which we call multi-view TopoImages. % The multi-view TopoImages are fused with the input image for DL-based classification, with considerable improvement. % Our TopoImages approach is highly versatile and can be seamlessly integrated into common DL frameworks. Experiments on three public medical image classification datasets demonstrate noticeably improved accuracy over state-of-the-art methods.

Classification of Brain Tumors using Hybrid Deep Learning Models

Neerav Nemchand Gala

arxiv logopreprintAug 2 2025
The use of Convolutional Neural Networks (CNNs) has greatly improved the interpretation of medical images. However, conventional CNNs typically demand extensive computational resources and large training datasets. To address these limitations, this study applied transfer learning to achieve strong classification performance using fewer training samples. Specifically, the study compared EfficientNetV2 with its predecessor, EfficientNet, and with ResNet50 in classifying brain tumors into three types: glioma, meningioma, and pituitary tumors. Results showed that EfficientNetV2 delivered superior performance compared to the other models. However, this improvement came at the cost of increased training time, likely due to the model's greater complexity.

Integrating Time and Frequency Domain Features of fMRI Time Series for Alzheimer's Disease Classification Using Graph Neural Networks.

Peng W, Li C, Ma Y, Dai W, Fu D, Liu L, Liu L, Yu N, Liu J

pubmed logopapersAug 2 2025
Accurate and early diagnosis of Alzheimer's Disease (AD) is crucial for timely interventions and treatment advancement. Functional Magnetic Resonance Imaging (fMRI), measuring brain blood-oxygen level changes over time, is a powerful AD-diagnosis tool. However, current fMRI-based AD diagnosis methods rely on noise-susceptible time-domain features and focus only on synchronous brain-region interactions in the same time phase, neglecting asynchronous ones. To overcome these issues, we propose Frequency-Time Fusion Graph Neural Network (FTF-GNN). It integrates frequency- and time-domain features for robust AD classification, considering both asynchronous and synchronous brain-region interactions. First, we construct a fully connected hypervariate graph, where nodes represent brain regions and their Blood Oxygen Level-Dependent (BOLD) values at a time series point. A Discrete Fourier Transform (DFT) transforms these BOLD values from the spatial to the frequency domain for frequency-component analysis. Second, a Fourier-based Graph Neural Network (FourierGNN) processes the frequency features to capture asynchronous brain region connectivity patterns. Third, these features are converted back to the time domain and reshaped into a matrix where rows represent brain regions and columns represent their frequency-domain features at each time point. Each brain region then fuses its frequency-domain features with position encoding along the time series, preserving temporal and spatial information. Next, we build a brain-region network based on synchronous BOLD value associations and input the brain-region network and the fused features into a Graph Convolutional Network (GCN) to capture synchronous brain region connectivity patterns. Finally, a fully connected network classifies the brain-region features. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate the method's effectiveness: Our model achieves 91.26% accuracy and 96.79% AUC in AD versus Normal Control (NC) classification, showing promising performance. For early-stage detection, it attains state-of-the-art performance in distinguishing NC from Late Mild Cognitive Impairment (LMCI) with 87.16% accuracy and 93.22% AUC. Notably, in the challenging task of differentiating LMCI from AD, FTF-GNN achieves optimal performance (85.30% accuracy, 94.56% AUC), while also delivering competitive results (77.40% accuracy, 91.17% AUC) in distinguishing Early MCI (EMCI) from LMCI-the most clinically complex subtype classification. These results indicate that leveraging complementary frequency- and time-domain information, along with considering asynchronous and synchronous brain-region interactions, can address existing approach limitations, offering a robust neuroimaging-based diagnostic solution.

Transfer learning based deep architecture for lung cancer classification using CT image with pattern and entropy based feature set.

R N, C M V

pubmed logopapersAug 2 2025
Early detection of lung cancer, which remains one of the leading causes of death worldwide, is important for improved prognosis, and CT scanning is an important diagnostic modality. Lung cancer classification according to CT scan is challenging since the disease is characterized by very variable features. A hybrid deep architecture, ILN-TL-DM, is presented in this paper for precise classification of lung cancer from CT scan images. Initially, an Adaptive Gaussian filtering method is applied during pre-processing to eliminate noise and enhance the quality of the CT image. This is followed by an Improved Attention-based ResU-Net (P-ResU-Net) model being utilized during the segmentation process to accurately isolate the lung and tumor areas from the remaining image. During the process of feature extraction, various features are derived from the segmented images, such as Local Gabor Transitional Pattern (LGTrP), Pyramid of Histograms of Oriented Gradients (PHOG), deep features and improved entropy-based features, all intended to improve the representation of the tumor areas. Finally, classification exploits a hybrid deep learning architecture integrating an improved LeNet structure with Transfer Learning (ILN-TL) and a DeepMaxout (DM) structure. Both model outputs are finally merged with the help of a soft voting strategy, which results in the final classification result that separates cancerous and non-cancerous tissues. The strategy greatly enhances lung cancer detection's accuracy and strength, showcasing how combining sophisticated neural network structures with feature engineering and ensemble methods could be used to achieve better medical image classification. The ILN-TL-DM model consistently outperforms the conventional methods with greater accuracy (0.962), specificity (0.955) and NPV (0.964).

EfficientGFormer: Multimodal Brain Tumor Segmentation via Pruned Graph-Augmented Transformer

Fatemeh Ziaeetabar

arxiv logopreprintAug 2 2025
Accurate and efficient brain tumor segmentation remains a critical challenge in neuroimaging due to the heterogeneous nature of tumor subregions and the high computational cost of volumetric inference. In this paper, we propose EfficientGFormer, a novel architecture that integrates pretrained foundation models with graph-based reasoning and lightweight efficiency mechanisms for robust 3D brain tumor segmentation. Our framework leverages nnFormer as a modality-aware encoder, transforming multi-modal MRI volumes into patch-level embeddings. These features are structured into a dual-edge graph that captures both spatial adjacency and semantic similarity. A pruned, edge-type-aware Graph Attention Network (GAT) enables efficient relational reasoning across tumor subregions, while a distillation module transfers knowledge from a full-capacity teacher to a compact student model for real-time deployment. Experiments on the MSD Task01 and BraTS 2021 datasets demonstrate that EfficientGFormer achieves state-of-the-art accuracy with significantly reduced memory and inference time, outperforming recent transformer-based and graph-based baselines. This work offers a clinically viable solution for fast and accurate volumetric tumor delineation, combining scalability, interpretability, and generalization.

AI enhanced diagnostic accuracy and workload reduction in hepatocellular carcinoma screening.

Lu RF, She CY, He DN, Cheng MQ, Wang Y, Huang H, Lin YD, Lv JY, Qin S, Liu ZZ, Lu ZR, Ke WP, Li CQ, Xiao H, Xu ZF, Liu GJ, Yang H, Ren J, Wang HB, Lu MD, Huang QH, Chen LD, Wang W, Kuang M

pubmed logopapersAug 2 2025
Hepatocellular carcinoma (HCC) ultrasound screening encounters challenges related to accuracy and the workload of radiologists. This retrospective, multicenter study assessed four artificial intelligence (AI) enhanced strategies using 21,934 liver ultrasound images from 11,960 patients to improve HCC ultrasound screening accuracy and reduce radiologist workload. UniMatch was used for lesion detection and LivNet for classification, trained on 17,913 images. Among the strategies tested, Strategy 4, which combined AI for initial detection and radiologist evaluation of negative cases in both detection and classification phases, outperformed others. It not only matched the high sensitivity of original algorithm (0.956 vs. 0.991) but also improved specificity (0.787 vs. 0.698), reduced radiologist workload by 54.5%, and decreased both recall and false positive rates. This approach demonstrates a successful model of human-AI collaboration, not only enhancing clinical outcomes but also mitigating unnecessary patient anxiety and system burden by minimizing recalls and false positives.

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.

Evaluating the Efficacy of Various Deep Learning Architectures for Automated Preprocessing and Identification of Impacted Maxillary Canines in Panoramic Radiographs.

Alenezi O, Bhattacharjee T, Alseed HA, Tosun YI, Chaudhry J, Prasad S

pubmed logopapersAug 2 2025
Previously, automated cropping and a reasonable classification accuracy for distinguishing impacted and non-impacted canines were demonstrated. This study evaluates multiple convolutional neural network (CNN) architectures for improving accuracy as a step towards a fully automated software for identification of impacted maxillary canines (IMCs) in panoramic radiographs (PRs). Eight CNNs (SqueezeNet, GoogLeNet, NASNet-Mobile, ShuffleNet, VGG-16, ResNet 50, DenseNet 201, and Inception V3) were compared in terms of their ability to classify 2 groups of PRs (impacted: n = 91; and non-impacted: n = 91 maxillary canines) before pre-processing and after applying automated cropping. For the PRs with impacted and non-impacted maxillary canines, GoogLeNet achieved the highest classification performance among the tested CNN architectures. Area under the curve (AUC) values of the Receiver Operating Characteristic (ROC) analysis without preprocessing and with preprocessing were 0.9 and 0.99 respectively, compared to 0.84 and 0.96 respectively with SqueezeNet. Among the tested CNN architectures, GoogLeNet achieved the highest performance on this dataset for the automated identification of impacted maxillary canines on both cropped and uncropped PRs.

Multimodal Attention-Aware Fusion for Diagnosing Distal Myopathy: Evaluating Model Interpretability and Clinician Trust

Mohsen Abbaspour Onari, Lucie Charlotte Magister, Yaoxin Wu, Amalia Lupi, Dario Creazzo, Mattia Tordin, Luigi Di Donatantonio, Emilio Quaia, Chao Zhang, Isel Grau, Marco S. Nobile, Yingqian Zhang, Pietro Liò

arxiv logopreprintAug 2 2025
Distal myopathy represents a genetically heterogeneous group of skeletal muscle disorders with broad clinical manifestations, posing diagnostic challenges in radiology. To address this, we propose a novel multimodal attention-aware fusion architecture that combines features extracted from two distinct deep learning models, one capturing global contextual information and the other focusing on local details, representing complementary aspects of the input data. Uniquely, our approach integrates these features through an attention gate mechanism, enhancing both predictive performance and interpretability. Our method achieves a high classification accuracy on the BUSI benchmark and a proprietary distal myopathy dataset, while also generating clinically relevant saliency maps that support transparent decision-making in medical diagnosis. We rigorously evaluated interpretability through (1) functionally grounded metrics, coherence scoring against reference masks and incremental deletion analysis, and (2) application-grounded validation with seven expert radiologists. While our fusion strategy boosts predictive performance relative to single-stream and alternative fusion strategies, both quantitative and qualitative evaluations reveal persistent gaps in anatomical specificity and clinical usefulness of the interpretability. These findings highlight the need for richer, context-aware interpretability methods and human-in-the-loop feedback to meet clinicians' expectations in real-world diagnostic settings.

Temporal consistency-aware network for renal artery segmentation in X-ray angiography.

Yang B, Li C, Fezzi S, Fan Z, Wei R, Chen Y, Tavella D, Ribichini FL, Zhang S, Sharif F, Tu S

pubmed logopapersAug 2 2025
Accurate segmentation of renal arteries from X-ray angiography videos is crucial for evaluating renal sympathetic denervation (RDN) procedures but remains challenging due to dynamic changes in contrast concentration and vessel morphology across frames. The purpose of this study is to propose TCA-Net, a deep learning model that improves segmentation consistency by leveraging local and global contextual information in angiography videos. Our approach utilizes a novel deep learning framework that incorporates two key modules: a local temporal window vessel enhancement module and a global vessel refinement module (GVR). The local module fuses multi-scale temporal-spatial features to improve the semantic representation of vessels in the current frame, while the GVR module integrates decoupled attention strategies (video-level and object-level attention) and gating mechanisms to refine global vessel information and eliminate redundancy. To further improve segmentation consistency, a temporal perception consistency loss function is introduced during training. We evaluated our model using 195 renal artery angiography sequences for development and tested it on an external dataset from 44 patients. The results demonstrate that TCA-Net achieves an F1-score of 0.8678 for segmenting renal arteries, outperforming existing state-of-the-art segmentation methods. We present TCA-Net, a deep learning-based model that significantly improves segmentation consistency for renal artery angiography videos. By effectively leveraging both local and global temporal contextual information, TCA-Net outperforms current methods and provides a reliable tool for assessing RDN procedures.
Page 62 of 3533530 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.