U-Net-based architecture with attention mechanisms and Bayesian Optimization for brain tumor segmentation using MR images.

Authors

Ramalakshmi K,Krishna Kumari L

Affiliations (2)

  • Electronics and Communication Engineering, P.S.R.Engineering College, Sivakasi, 626140, Tamilnadu, India. Electronic address: [email protected].
  • Electronics and Communication Engineering, Ramco Institute of Technology, Rajapalayam, 626 117, Tamilnadu, India.

Abstract

As technological innovation in computers has advanced, radiologists may now diagnose brain tumors (BT) with the use of artificial intelligence (AI). In the medical field, early disease identification enables further therapies, where the use of AI systems is essential for time and money savings. The difficulties presented by various forms of Magnetic Resonance (MR) imaging for BT detection are frequently not addressed by conventional techniques. To get around frequent problems with traditional tumor detection approaches, deep learning techniques have been expanded. Thus, for BT segmentation utilizing MR images, a U-Net-based architecture combined with Attention Mechanisms has been developed in this work. Moreover, by fine-tuning essential variables, Hyperparameter Optimization (HPO) is used using the Bayesian Optimization Algorithm to strengthen the segmentation model's performance. Tumor regions are pinpointed for segmentation using Region-Adaptive Thresholding technique, and the segmentation results are validated against ground truth annotated images to assess the performance of the suggested model. Experiments are conducted using the LGG, Healthcare, and BraTS 2021 MRI brain tumor datasets. Lastly, the importance of the suggested model has been demonstrated through comparing several metrics, such as IoU, accuracy, and DICE Score, with current state-of-the-art methods. The U-Net-based method gained a higher DICE score of 0.89687 in the segmentation of MRI-BT.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.