Sort by:
Page 6 of 45442 results

A Privacy-Preserving Federated Learning Framework for Generalizable CBCT to Synthetic CT Translation in Head and Neck

Ciro Benito Raggio, Paolo Zaffino, Maria Francesca Spadea

arxiv logopreprintJun 10 2025
Shortened Abstract Cone-beam computed tomography (CBCT) has become a widely adopted modality for image-guided radiotherapy (IGRT). However, CBCT suffers from increased noise, limited soft-tissue contrast, and artifacts, resulting in unreliable Hounsfield unit values and hindering direct dose calculation. Synthetic CT (sCT) generation from CBCT addresses these issues, especially using deep learning (DL) methods. Existing approaches are limited by institutional heterogeneity, scanner-dependent variations, and data privacy regulations that prevent multi-center data sharing. To overcome these challenges, we propose a cross-silo horizontal federated learning (FL) approach for CBCT-to-sCT synthesis in the head and neck region, extending our FedSynthCT framework. A conditional generative adversarial network was collaboratively trained on data from three European medical centers in the public SynthRAD2025 challenge dataset. The federated model demonstrated effective generalization across centers, with mean absolute error (MAE) ranging from $64.38\pm13.63$ to $85.90\pm7.10$ HU, structural similarity index (SSIM) from $0.882\pm0.022$ to $0.922\pm0.039$, and peak signal-to-noise ratio (PSNR) from $32.86\pm0.94$ to $34.91\pm1.04$ dB. Notably, on an external validation dataset of 60 patients, comparable performance was achieved (MAE: $75.22\pm11.81$ HU, SSIM: $0.904\pm0.034$, PSNR: $33.52\pm2.06$ dB) without additional training, confirming robust generalization despite protocol, scanner differences and registration errors. These findings demonstrate the technical feasibility of FL for CBCT-to-sCT synthesis while preserving data privacy and offer a collaborative solution for developing generalizable models across institutions without centralized data sharing or site-specific fine-tuning.

Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces

Dieuwertje Alblas, Patryk Rygiel, Julian Suk, Kaj O. Kappe, Marieke Hofman, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink

arxiv logopreprintJun 10 2025
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.

Robotic Central Pancreatectomy with Omental Pedicle Flap: Tactics and Tips.

Kawano F, Lim MA, Kemprecos HJ, Tsai K, Cheah D, Tigranyan A, Kaviamuthan K, Pillai A, Chen JC, Polites G, Mise Y, Cohen M, Saiura A, Conrad C

pubmed logopapersJun 10 2025
Robotic central pancreatectomy is increasingly used for pre- or low-grade malignant tumors in the pancreatic body balancing preservation of pancreatic function while removing the target lesion.<sup>1-3</sup> Today, there is no established reconstruction method and high rates of postpancreatectomy fistulas (POPF) remain a significant concern. <sup>4,5</sup> We developed novel technique involving transgastric pancreaticogastrostomy with an omental pedicle advancement flap to reduce the risk of POPF. Additionally, preoperative deep-learning 3D organ modeling plays a crucial role in enhancing spatial understanding to enhance procedural safety.<sup>6,7</sup> METHODS: A 76-year-old female patient with a 33-mm, biopsy-confirmed high-risk IPMN underwent robotic-assisted central pancreatectomy. Preoperative CT was processed with a deep-learning system to create a patient-specific 3D model, enabling virtual simulation of port configurations. The optimal setup was selected based on the spatial relationship between port site, tumor location, and anatomy A transgastric pancreaticogastrostomy with omental flap reinforcement was performed to reduce POPF leading to a simpler reconstruction compared to pancreaticojejunostomy. The procedure lasted 218 min with minimal blood loss (50 ml). No complications occurred, and the patient was discharged on postoperative Day 3 after drain removal. Final pathology showed low-grade dysplasia. This approach, facilitated by robotic assistance, effectively preserves pancreatic function while treating a low-grade malignant tumor. Preoperative 3D organ modeling enhances the spatial understanding with the goal to increase procedural safety. Finally, the omental pedicle advancement flap technique shows promise in possibly reducing the incidence or at least the impact of POPF.

A Deep Learning Model for Identifying the Risk of Mesenteric Malperfusion in Acute Aortic Dissection Using Initial Diagnostic Data: Algorithm Development and Validation.

Jin Z, Dong J, Li C, Jiang Y, Yang J, Xu L, Li P, Xie Z, Li Y, Wang D, Ji Z

pubmed logopapersJun 10 2025
Mesenteric malperfusion (MMP) is an uncommon but devastating complication of acute aortic dissection (AAD) that combines 2 life-threatening conditions-aortic dissection and acute mesenteric ischemia. The complex pathophysiology of MMP poses substantial diagnostic and management challenges. Currently, delayed diagnosis remains a critical contributor to poor outcomes because of the absence of reliable individualized risk assessment tools. This study aims to develop and validate a deep learning-based model that integrates multimodal data to identify patients with AAD at high risk of MMP. This multicenter retrospective study included 525 patients with AAD from 2 hospitals. The training and internal validation cohort consisted of 450 patients from Beijing Anzhen Hospital, whereas the external validation cohort comprised 75 patients from Nanjing Drum Tower Hospital. Three machine learning models were developed: the benchmark model using laboratory parameters, the multiorgan feature-based AAD complicating MMP (MAM) model based on computed tomography angiography images, and the integrated model combining both data modalities. Model performance was assessed using the area under the curve, accuracy, sensitivity, specificity, and Brier score. To improve interpretability, gradient-weighted class activation mapping was used to identify and visualize discriminative imaging features. Univariate and multivariate regression analyses were used to evaluate the prognostic significance of the risk score generated by the optimal model. In the external validation cohort, the integrated model demonstrated superior performance, with an area under the curve of 0.780 (95% CI 0.777-0.785), which was significantly greater than those of the benchmark model (0.586, 95% CI 0.574-0.586) and the MAM model (0.732, 95% CI 0.724-0.734). This highlights the benefits of multimodal integration over single-modality approaches. Additional classification metrics revealed that the integrated model had an accuracy of 0.760 (95% CI 0.758-0.764), a sensitivity of 0.667 (95% CI 0.659-0.675), a specificity of 0.783 (95% CI 0.781-0.788), and a Brier score of 0.143 (95% CI 0.143-0.145). Moreover, gradient-weighted class activation mapping visualizations of the MAM model revealed that during positive predictions, the model focused more on key anatomical areas, particularly the superior mesenteric artery origin and intestinal regions with characteristic gas or fluid accumulation. Univariate and multivariate analyses also revealed that the risk score derived from the integrated model was independently associated with inhospital mortality risk among patients with AAD undergoing endovascular or surgical treatment (odds ratio 1.030, 95% CI 1.004-1.056; P=.02). Our findings demonstrate that compared with unimodal approaches, an integrated deep learning model incorporating both imaging and clinical data has greater diagnostic accuracy for MMP in patients with AAD. This model may serve as a valuable tool for early risk identification, facilitating timely therapeutic decision-making. Further prospective validation is warranted to confirm its clinical utility. Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129.

Snap-and-tune: combining deep learning and test-time optimization for high-fidelity cardiovascular volumetric meshing

Daniel H. Pak, Shubh Thaker, Kyle Baylous, Xiaoran Zhang, Danny Bluestein, James S. Duncan

arxiv logopreprintJun 9 2025
High-quality volumetric meshing from medical images is a key bottleneck for physics-based simulations in personalized medicine. For volumetric meshing of complex medical structures, recent studies have often utilized deep learning (DL)-based template deformation approaches to enable fast test-time generation with high spatial accuracy. However, these approaches still exhibit limitations, such as limited flexibility at high-curvature areas and unrealistic inter-part distances. In this study, we introduce a simple yet effective snap-and-tune strategy that sequentially applies DL and test-time optimization, which combines fast initial shape fitting with more detailed sample-specific mesh corrections. Our method provides significant improvements in both spatial accuracy and mesh quality, while being fully automated and requiring no additional training labels. Finally, we demonstrate the versatility and usefulness of our newly generated meshes via solid mechanics simulations in two different software platforms. Our code is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-Mesh.

Differentiating Bacterial and Non-Bacterial Pneumonia on Chest CT Using Multi-Plane Features and Clinical Biomarkers.

Song L, Zhan Y, Li L, Li X, Wu Y, Zhao M, Li Z, Ren G, Cai J

pubmed logopapersJun 9 2025
Timely and accurate classification of bacterial pneumonia (BP) is essential for guiding antibiotic therapy. However, distinguishing BP from non-bacterial pneumonia (NBP) using computed tomography (CT) is challenging due to overlapping imaging features and limited biomarker specificity, often leading to delayed or empirical treatment. This study aimed to develop and evaluate MPMT-Pneumo, a multi-plane, multi-modal deep learning model, to improve BP versus NBP differentiation. A total of 384 patients with microbiologically confirmed pneumonia (239 BP, 145 NBP) from two hospitals were included and divided into training and test sets. MPMT-Pneumo utilized a hybrid CNN-Transformer architecture to integrate features from axial, coronal, sagittal CT views and four routine inflammatory biomarkers (WBC, ANC, CRP, PCT). Poly Focal Loss addressed class imbalance during training. Performance was evaluated using Area Under the Curve (AUC), accuracy, and sensitivity on the test set. MPMT-Pneumo was benchmarked against recent deep learning models, biomarker-only models, and clinical radiologists' CT interpretations. Ablation studies assessed component contributions. MPMT-Pneumo achieved an AUC of 0.874, accuracy of 0.852, and sensitivity of 0.894 on the test set, outperforming baseline deep learning models and biomarker-only models. Sensitivity for BP detection surpassed that of less experienced radiologists and was comparable to the most experienced. Ablation studies confirmed the importance of both multi-plane imaging and biomarkers. MPMT-Pneumo provides a clinically applicable solution for BP classification and shows great potential in improving diagnostic accuracy and promoting more rational antibiotic use in clinical practice.

Automated Vessel Occlusion Software in Acute Ischemic Stroke: Pearls and Pitfalls.

Aziz YN, Sriwastwa A, Nael K, Harker P, Mistry EA, Khatri P, Chatterjee AR, Heit JJ, Jadhav A, Yedavalli V, Vagal AS

pubmed logopapersJun 9 2025
Software programs leveraging artificial intelligence to detect vessel occlusions are now widely available to aid in stroke triage. Given their proprietary use, there is a surprising lack of information regarding how the software works, who is using the software, and their performance in an unbiased real-world setting. In this educational review of automated vessel occlusion software, we discuss emerging evidence of their utility, underlying algorithms, real-world diagnostic performance, and limitations. The intended audience includes specialists in stroke care in neurology, emergency medicine, radiology, and neurosurgery. Practical tips for onboarding and utilization of this technology are provided based on the multidisciplinary experience of the authorship team.

MHASegNet: A multi-scale hybrid aggregation network of segmenting coronary artery from CCTA images.

Li S, Wu Y, Jiang B, Liu L, Zhang T, Sun Y, Hou J, Monkam P, Qian W, Qi S

pubmed logopapersJun 9 2025
Segmentation of coronary arteries in Coronary Computed Tomography Angiography (CCTA) images is crucial for diagnosing coronary artery disease (CAD), but remains challenging due to small artery size, uneven contrast distribution, and issues like over-segmentation or omission. The aim of this study is to improve coronary artery segmentation in CCTA images using both conventional and deep learning techniques. We propose MHASegNet, a lightweight network for coronary artery segmentation, combined with a tailored refinement method. MHASegNet employs multi-scale hybrid attention to capture global and local features, and integrates a 3D context anchor attention module to focus on key coronary artery structures while suppressing background noise. An iterative, region-growth-based refinement addresses crown breaks and reduces false alarms. We evaluated the method on an in-house dataset of 90 subjects and two public datasets with 1060 subjects. MHASegNet, coupled with tailored refinement, outperforms state-of-the-art algorithms, achieving a Dice Similarity Coefficient (DSC) of 0.867 on the in-house dataset, 0.875 on the ASOCA dataset, and 0.827 on the ImageCAS dataset. The tailored refinement significantly reduces false positives and resolves most discontinuities, even for other networks. MHASegNet and the tailored refinement may aid in diagnosing and quantifying CAD following further validation.

Multi-task and multi-scale attention network for lymph node metastasis prediction in esophageal cancer.

Yi Y, Wang J, Li Z, Wang L, Ding X, Zhou Q, Huang Y, Li B

pubmed logopapersJun 9 2025
The accurate diagnosis of lymph node metastasis in esophageal squamous cell carcinoma is crucial in the treatment workflow, and the process is often time-consuming for clinicians. Recent deep learning models predicting whether lymph nodes are affected by cancer in esophageal cancer cases suffer from challenging node delineation and hence gain poor diagnosis accuracy. This paper proposes an innovative multi-task and multi-scale attention network (M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet) to predict lymph node metastasis precisely. The network softly expands the regions of the node mask and subsequently utilizes the expanded mask to aggregate image features, thereby amplifying the node contexts. It additionally proposes a two-branch training strategy that compels the model to simultaneously predict metastasis probability and node masks, fostering a more comprehensive learning process. The node metastasis prediction performance has been evaluated on a self-collected dataset with 177 patients. Our model finally achieves a competitive accuracy of 83.7% on the test set comprising 577 nodes. With the adaptability to intricate patterns and ability to handle data variations, M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet emerges as a promising tool for robust and comprehensive lymph node metastasis prediction in medical image analysis.

Deep learning-based post-hoc noise reduction improves quarter-radiation-dose coronary CT angiography.

Morikawa T, Nishii T, Tanabe Y, Yoshida K, Toshimori W, Fukuyama N, Toritani H, Suekuni H, Fukuda T, Kido T

pubmed logopapersJun 9 2025
To evaluate the impact of deep learning-based post-hoc noise reduction (DLNR) on image quality, coronary artery disease reporting and data system (CAD-RADS) assessment, and diagnostic performance in quarter-dose versus full-dose coronary CT angiography (CCTA) on external datasets. We retrospectively reviewed 221 patients who underwent retrospective electrocardiogram-gated CCTA in 2022-2023. Using dose modulation, either mid-diastole or end-systole was scanned at full dose depending on heart rates, and the other phase at quarter dose. Only patients with motion-free coronaries in both phases were included. Images were acquired using iterative reconstruction, and a residual dense network trained on external datasets denoised the quarter-dose images. Image quality was assessed by comparing noise levels using Tukey's test. Two radiologists independently assessed CAD-RADS, with agreement to full-dose images evaluated by Cohen's kappa. Diagnostic performance for significant stenosis referencing full-dose images was compared between quarter-dose and denoised images by the area under the receiver operating characteristic curve (AUC) using the DeLong test. Among 40 cases (age, 71 ± 7 years; 24 males), DLNR reduced noise from 37 to 18 HU (P < 0.001) in quarter-dose CCTA (full-dose images: 22 HU), and improved CAD-RADS agreement from moderate (0.60 [95 % CI: 0.41-0.78]) to excellent (0.82 [95 % CI: 0.66-0.94]). Denoised images demonstrated a superior AUC (0.97 [95 % CI: 0.95-1.00]) for diagnosing significant stenosis compared with original quarter-dose images (0.93 [95 % CI: 0.89-0.98]; P = 0.032). DLNR for quarter-dose CCTA significantly improved image quality, CAD-RADS agreement, and diagnostic performance for detecting significant stenosis referencing full-dose images.
Page 6 of 45442 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.