Sort by:
Page 6 of 41408 results

Collaborative Integration of AI and Human Expertise to Improve Detection of Chest Radiograph Abnormalities.

Awasthi A, Le N, Deng Z, Wu CC, Nguyen HV

pubmed logopapersJul 16 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a collaborative AI system that integrates eye gaze data and radiology reports to improve diagnostic accuracy in chest radiograph interpretation by identifying and correcting perceptual errors. Materials and Methods This retrospective study utilized public datasets REFLACX and EGD-CXR to develop a collaborative AI solution, named Collaborative Radiology Expert (CoRaX). It employs a large multimodal model to analyze image embeddings, eye gaze data, and radiology reports, aiming to rectify perceptual errors in chest radiology. The proposed system was evaluated using two simulated error datasets featuring random and uncertain alterations of five abnormalities. Evaluation focused on the system's referral-making process, the quality of referrals, and its performance within collaborative diagnostic settings. Results In the random masking-based error dataset, 28.0% (93/332) of abnormalities were altered. The system successfully corrected 21.3% (71/332) of these errors, with 6.6% (22/332) remaining unresolved. The accuracy of the system in identifying the correct regions of interest for missed abnormalities was 63.0% [95% CI: 59.0%, 68.0%], and 85.7% (240/280) of interactions with radiologists were deemed satisfactory, meaning that the system provided diagnostic aid to radiologists. In the uncertainty-masking-based error dataset, 43.9% (146/332) of abnormalities were altered. The system corrected 34.6% (115/332) of these errors, with 9.3% (31/332) unresolved. The accuracy of predicted regions of missed abnormalities for this dataset was 58.0% [95% CI: 55.0%, 62.0%], and 78.4% (233/297) of interactions were satisfactory. Conclusion The CoRaX system can collaborate efficiently with radiologists and address perceptual errors across various abnormalities in chest radiographs. ©RSNA, 2025.

Single Inspiratory Chest CT-based Generative Deep Learning Models to Evaluate Functional Small Airway Disease.

Zhang D, Zhao M, Zhou X, Li Y, Guan Y, Xia Y, Zhang J, Dai Q, Zhang J, Fan L, Zhou SK, Liu S

pubmed logopapersJul 16 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a deep learning model that uses a single inspiratory chest CT scan to generate parametric response maps (PRM) and predict functional small airway disease (fSAD). Materials and Methods In this retrospective study, predictive and generative deep learning models for PRM using inspiratory chest CT were developed using a model development dataset with fivefold cross-validation, with PRM derived from paired respiratory CT as the reference standard. Voxel-wise metrics, including sensitivity, area under the receiver operating characteristic curve (AUC), and structural similarity, were used to evaluate model performance in predicting PRM and expiratory CT images. The best performing model was tested on three internal test sets and an external test set. Results The model development dataset of 308 patients (median age, 67 years, [IQR: 62-70 years]; 113 female) was divided into the training set (<i>n</i> = 216), the internal validation set (<i>n</i> = 31), and the first internal test set (<i>n</i> = 61). The generative model outperformed the predictive model in detecting fSAD (sensitivity 86.3% vs 38.9%; AUC 0.86 vs 0.70). The generative model performed well in the second internal (AUCs of 0.64, 0.84, 0.97 for emphysema, fSAD and normal lung tissue), the third internal (AUCs of 0.63, 0.83, 0.97), and the external (AUCs of 0.58, 0.85, 0.94) test sets. Notably, the model exhibited exceptional performance in the PRISm group of the fourth internal test set (AUC = 0.62, 0.88, and 0.96). Conclusion The proposed generative model, using a single inspiratory CT, outperformed existing algorithms in PRM evaluation, achieved comparable results to paired respiratory CT. Published under a CC BY 4.0 license.

Site-Level Fine-Tuning with Progressive Layer Freezing: Towards Robust Prediction of Bronchopulmonary Dysplasia from Day-1 Chest Radiographs in Extremely Preterm Infants

Sybelle Goedicke-Fritz, Michelle Bous, Annika Engel, Matthias Flotho, Pascal Hirsch, Hannah Wittig, Dino Milanovic, Dominik Mohr, Mathias Kaspar, Sogand Nemat, Dorothea Kerner, Arno Bücker, Andreas Keller, Sascha Meyer, Michael Zemlin, Philipp Flotho

arxiv logopreprintJul 16 2025
Bronchopulmonary dysplasia (BPD) is a chronic lung disease affecting 35% of extremely low birth weight infants. Defined by oxygen dependence at 36 weeks postmenstrual age, it causes lifelong respiratory complications. However, preventive interventions carry severe risks, including neurodevelopmental impairment, ventilator-induced lung injury, and systemic complications. Therefore, early BPD prognosis and prediction of BPD outcome is crucial to avoid unnecessary toxicity in low risk infants. Admission radiographs of extremely preterm infants are routinely acquired within 24h of life and could serve as a non-invasive prognostic tool. In this work, we developed and investigated a deep learning approach using chest X-rays from 163 extremely low-birth-weight infants ($\leq$32 weeks gestation, 401-999g) obtained within 24 hours of birth. We fine-tuned a ResNet-50 pretrained specifically on adult chest radiographs, employing progressive layer freezing with discriminative learning rates to prevent overfitting and evaluated a CutMix augmentation and linear probing. For moderate/severe BPD outcome prediction, our best performing model with progressive freezing, linear probing and CutMix achieved an AUROC of 0.78 $\pm$ 0.10, balanced accuracy of 0.69 $\pm$ 0.10, and an F1-score of 0.67 $\pm$ 0.11. In-domain pre-training significantly outperformed ImageNet initialization (p = 0.031) which confirms domain-specific pretraining to be important for BPD outcome prediction. Routine IRDS grades showed limited prognostic value (AUROC 0.57 $\pm$ 0.11), confirming the need of learned markers. Our approach demonstrates that domain-specific pretraining enables accurate BPD prediction from routine day-1 radiographs. Through progressive freezing and linear probing, the method remains computationally feasible for site-level implementation and future federated learning deployments.

Semantically Informed Salient Regions Guided Radiology Report Generation

Zeyi Hou, Zeqiang Wei, Ruixin Yan, Ning Lang, Xiuzhuang Zhou

arxiv logopreprintJul 15 2025
Recent advances in automated radiology report generation from chest X-rays using deep learning algorithms have the potential to significantly reduce the arduous workload of radiologists. However, due to the inherent massive data bias in radiology images, where abnormalities are typically subtle and sparsely distributed, existing methods often produce fluent yet medically inaccurate reports, limiting their applicability in clinical practice. To address this issue effectively, we propose a Semantically Informed Salient Regions-guided (SISRNet) report generation method. Specifically, our approach explicitly identifies salient regions with medically critical characteristics using fine-grained cross-modal semantics. Then, SISRNet systematically focuses on these high-information regions during both image modeling and report generation, effectively capturing subtle abnormal findings, mitigating the negative impact of data bias, and ultimately generating clinically accurate reports. Compared to its peers, SISRNet demonstrates superior performance on widely used IU-Xray and MIMIC-CXR datasets.

Performance of a screening-trained DL model for pulmonary nodule malignancy estimation of incidental clinical nodules.

Dinnessen R, Peeters D, Antonissen N, Mohamed Hoesein FAA, Gietema HA, Scholten ET, Schaefer-Prokop C, Jacobs C

pubmed logopapersJul 15 2025
To test the performance of a DL model developed and validated for screen-detected pulmonary nodules on incidental nodules detected in a clinical setting. A retrospective dataset of incidental pulmonary nodules sized 5-15 mm was collected, and a subset of size-matched solid nodules was selected. The performance of the DL model was compared to the Brock model. AUCs with 95% CIs were compared using the DeLong method. Sensitivity and specificity were determined at various thresholds, using a 10% threshold for the Brock model as reference. The model's calibration was visually assessed. The dataset included 49 malignant and 359 benign solid or part-solid nodules, and the size-matched dataset included 47 malignant and 47 benign solid nodules. In the complete dataset, AUCs [95% CI] were 0.89 [0.85, 0.93] for the DL model and 0.86 [0.81, 0.92] for the Brock model (p = 0.27). In the size-matched subset, AUCs of the DL and Brock models were 0.78 [0.69, 0.88] and 0.58 [0.46, 0.69] (p < 0.01), respectively. At a 10% threshold, the Brock model had a sensitivity of 0.49 [0.35, 0.63] and a specificity of 0.92 [0.89, 0.94]. At a threshold of 17%, the DL model matched the specificity of the Brock model at the 10% threshold, but had a higher sensitivity (0.57 [0.43, 0.71]). Calibration analysis revealed that the DL model overestimated the malignancy probability. The DL model demonstrated good discriminatory performance in a dataset of incidental nodules and outperformed the Brock model, but may need recalibration for clinical practice. Question What is the performance of a DL model for pulmonary nodule malignancy risk estimation developed on screening data in a dataset of incidentally detected nodules? Findings The DL model performed well on a dataset of nodules from clinical routine care and outperformed the Brock model in a size-matched subset. Clinical relevance This study provides further evidence about the potential of DL models for risk stratification of incidental nodules, which may improve nodule management in routine clinical practice.

Advanced U-Net Architectures with CNN Backbones for Automated Lung Cancer Detection and Segmentation in Chest CT Images

Alireza Golkarieha, Kiana Kiashemshakib, Sajjad Rezvani Boroujenic, Nasibeh Asadi Isakand

arxiv logopreprintJul 14 2025
This study investigates the effectiveness of U-Net architectures integrated with various convolutional neural network (CNN) backbones for automated lung cancer detection and segmentation in chest CT images, addressing the critical need for accurate diagnostic tools in clinical settings. A balanced dataset of 832 chest CT images (416 cancerous and 416 non-cancerous) was preprocessed using Contrast Limited Adaptive Histogram Equalization (CLAHE) and resized to 128x128 pixels. U-Net models were developed with three CNN backbones: ResNet50, VGG16, and Xception, to segment lung regions. After segmentation, CNN-based classifiers and hybrid models combining CNN feature extraction with traditional machine learning classifiers (Support Vector Machine, Random Forest, and Gradient Boosting) were evaluated using 5-fold cross-validation. Metrics included accuracy, precision, recall, F1-score, Dice coefficient, and ROC-AUC. U-Net with ResNet50 achieved the best performance for cancerous lungs (Dice: 0.9495, Accuracy: 0.9735), while U-Net with VGG16 performed best for non-cancerous segmentation (Dice: 0.9532, Accuracy: 0.9513). For classification, the CNN model using U-Net with Xception achieved 99.1 percent accuracy, 99.74 percent recall, and 99.42 percent F1-score. The hybrid CNN-SVM-Xception model achieved 96.7 percent accuracy and 97.88 percent F1-score. Compared to prior methods, our framework consistently outperformed existing models. In conclusion, combining U-Net with advanced CNN backbones provides a powerful method for both segmentation and classification of lung cancer in CT scans, supporting early diagnosis and clinical decision-making.

A generative model uses healthy and diseased image pairs for pixel-level chest X-ray pathology localization.

Dong K, Cheng Y, He K, Suo J

pubmed logopapersJul 14 2025
Medical artificial intelligence (AI) offers potential for automatic pathological interpretation, but a practicable AI model demands both pixel-level accuracy and high explainability for diagnosis. The construction of such models relies on substantial training data with fine-grained labelling, which is impractical in real applications. To circumvent this barrier, we propose a prompt-driven constrained generative model to produce anatomically aligned healthy and diseased image pairs and learn a pathology localization model in a supervised manner. This paradigm provides high-fidelity labelled data and addresses the lack of chest X-ray images with labelling at fine scales. Benefitting from the emerging text-driven generative model and the incorporated constraint, our model presents promising localization accuracy of subtle pathologies, high explainability for clinical decisions, and good transferability to many unseen pathological categories such as new prompts and mixed pathologies. These advantageous features establish our model as a promising solution to assist chest X-ray analysis. In addition, the proposed approach is also inspiring for other tasks lacking massive training data and time-consuming manual labelling.

X-ray2CTPA: leveraging diffusion models to enhance pulmonary embolism classification.

Cahan N, Klang E, Aviram G, Barash Y, Konen E, Giryes R, Greenspan H

pubmed logopapersJul 14 2025
Chest X-rays or chest radiography (CXR), commonly used for medical diagnostics, typically enables limited imaging compared to computed tomography (CT) scans, which offer more detailed and accurate three-dimensional data, particularly contrast-enhanced scans like CT Pulmonary Angiography (CTPA). However, CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs. In this work, we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolution CTPA scan. Driven by recent advances in generative AI, we introduce a novel diffusion-based approach to this task. We employ the synthesized 3D images in a classification framework and show improved AUC in a Pulmonary Embolism (PE) categorization task, using the initial CXR input. Furthermore, we evaluate the model's performance using quantitative metrics, ensuring diagnostic relevance of the generated images. The proposed method is generalizable and capable of performing additional cross-modality translations in medical imaging. It may pave the way for more accessible and cost-effective advanced diagnostic tools. The code for this project is available: https://github.com/NoaCahan/X-ray2CTPA .

A Clinically-Informed Framework for Evaluating Vision-Language Models in Radiology Report Generation: Taxonomy of Errors and Risk-Aware Metric

Guan, H., Hou, P. C., Hong, P., Wang, L., Zhang, W., Du, X., Zhou, Z., Zhou, L.

medrxiv logopreprintJul 14 2025
Recent advances in vision-language models (VLMs) have enabled automatic radiology report generation, yet current evaluation methods remain limited to general-purpose NLP metrics or coarse classification-based clinical scores. In this study, we propose a clinically informed evaluation framework for VLM-generated radiology reports that goes beyond traditional performance measures. We define a taxonomy of 12 radiology-specific error types, each annotated with clinical risk levels (low, medium, high) in collaboration with physicians. Using this framework, we conduct a comprehensive error analysis of three representative VLMs, i.e., DeepSeek VL2, CXR-LLaVA, and CheXagent, on 685 gold-standard, expert-annotated MIMIC-CXR cases. We further introduce a risk-aware evaluation metric, the Clinical Risk-weighted Error Score for Text-generation (CREST), to quantify safety impact. Our findings reveal critical model vulnerabilities, common error patterns, and condition-specific risk profiles, offering actionable insights for model development and deployment. This work establishes a safety-centric foundation for evaluating and improving medical report generation models. The source code of our evaluation framework, including CREST computation and error taxonomy analysis, is available at https://github.com/guanharry/VLM-CREST.

An improved U-NET3+ with transformer and adaptive attention map for lung segmentation.

Joseph Raj V, Christopher P

pubmed logopapersJul 13 2025
Accurate segmentation of lung regions from CT scan images is critical for diagnosing and monitoring respiratory diseases. This study introduces a novel hybrid architecture Adaptive Attention U-NetAA, which combines the strengths of U-Net3 + and Transformer based attention mechanisms models for high-precision lung segmentation. The U-Net3 + module effectively segments the lung region by leveraging its deep convolutional network with nested skip connections, ensuring rich multi-scale feature extraction. A key innovation is introducing an adaptive attention mechanism within the Transformer module, which dynamically adjusts the focus on critical regions in the image based on local and global contextual relationships. This model's adaptive attention mechanism addresses variations in lung morphology, image artifacts, and low-contrast regions, leading to improved segmentation accuracy. The combined convolutional and attention-based architecture enhances robustness and precision. Experimental results on benchmark CT datasets demonstrate that the proposed model achieves an IoU of 0.984, a Dice coefficient of 0.989, a MIoU of 0.972, and an HD95 of 1.22 mm, surpassing state-of-the-art methods. These results establish U-NetAA as a superior tool for clinical lung segmentation, with enhanced accuracy, sensitivity, and generalization capability.
Page 6 of 41408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.