Back to all papers

MFFC-Net: Multi-feature Fusion Deep Networks for Classifying Pulmonary Edema of a Pilot Study by Using Lung Ultrasound Image with Texture Analysis and Transfer Learning Technique.

Authors

Bui NT,Luoma CE,Zhang X

Affiliations (2)

  • Mayo Clinic Research, Rochester, NY, USA.
  • Mayo Clinic Research, Rochester, NY, USA. [email protected].

Abstract

Lung ultrasound (LUS) has been widely used by point-of-care systems in both children and adult populations to provide different clinical diagnostics. This research aims to develop an interpretable system that uses a deep fusion network for classifying LUS video/patients based on extracted features by using texture analysis and transfer learning techniques to assist physicians. The pulmonary edema dataset includes 56 LUS videos and 4234 LUS frames. The COVID-BLUES dataset includes 294 LUS videos and 15,826 frames. The proposed multi-feature fusion classification network (MFFC-Net) includes the following: (1) two features extracted from Inception-ResNet-v2, Inception-v3, and 9 texture features of gray-level co-occurrence matrix (GLCM) and histogram of the region of interest (ROI); (2) a neural network for classifying LUS images with feature fusion input; and (3) four models (i.e., ANN, SVM, XGBoost, and kNN) used for classifying COVID/NON COVID patients. The training process was evaluated based on accuracy (0.9969), F1-score (0.9968), sensitivity (0.9967), specificity (0.9990), and precision (0.9970) metrics after the fivefold cross-validation stage. The results of the ANOVA analysis with 9 features of LUS images show that there was a significant difference between pulmonary edema and normal lungs (p < 0.01). The test results at the frame level of the MFFC-Net model achieved an accuracy of 100% and ROC-AUC (1.000) compared with ground truth at the video level with 4 groups of LUS videos. Test results at the patient level with the COVID-BLUES dataset achieved the highest accuracy of 81.25% with the kNN model. The proposed MFFC-Net model has 125 times higher information density (ID) compared to Inception-ResNet-v2 and 53.2 times compared with Inception-v3.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.