Sort by:
Page 6 of 99986 results

Advances in ultrasound-based imaging for diagnosis of endometrial cancer.

Tlais M, Hamze H, Hteit A, Haddad K, El Fassih I, Zalzali I, Mahmoud S, Karaki S, Jabbour D

pubmed logopapersSep 28 2025
Endometrial cancer (EC) is the most common gynecological malignancy in high-income countries, with incidence rates rising globally. Early and accurate diagnosis is essential for improving outcomes. Transvaginal ultrasound (TVUS) remains a cost-effective first-line tool, and emerging techniques such as three-dimensional (3D) ultrasound (US), contrast-enhanced US (CEUS), elastography, and artificial intelligence (AI)-enhanced imaging may further improve diagnostic performance. To systematically review recent advances in US-based imaging techniques for the diagnosis and staging of EC, and to compare their performance with magnetic resonance imaging (MRI). A systematic search of PubMed, Scopus, Web of Science, and Google Scholar was performed to identify studies published between January 2010 and March 2025. Eligible studies evaluated TVUS, 3D-US, CEUS, elastography, or AI-enhanced US in EC diagnosis and staging. Methodological quality was assessed using the QUADAS-2 tool. Sensitivity, specificity, and area under the curve (AUC) were extracted where available, with narrative synthesis due to heterogeneity. Forty-one studies met the inclusion criteria. TVUS demonstrated high sensitivity (76%-96%) but moderate specificity (61%-86%), while MRI achieved higher specificity (84%-95%) and superior staging accuracy. 3D-US yielded accuracy comparable to MRI in selected early-stage cases. CEUS and elastography enhanced tissue characterization, and AI-enhanced US achieved pooled AUCs up to 0.91 for risk prediction and lesion segmentation. Variability in performance was noted across modalities due to patient demographics, equipment differences, and operator experience. TVUS remains a highly sensitive initial screening tool, with MRI preferred for definitive staging. 3D-US, CEUS, elastography, and AI-enhanced techniques show promise as complementary or alternative approaches, particularly in low-resource settings. Standardization, multicenter validation, and integration of multi-modal imaging are needed to optimize diagnostic pathways for EC.

A Novel Hybrid Deep Learning and Chaotic Dynamics Approach for Thyroid Cancer Classification

Nada Bouchekout, Abdelkrim Boukabou, Morad Grimes, Yassine Habchi, Yassine Himeur, Hamzah Ali Alkhazaleh, Shadi Atalla, Wathiq Mansoor

arxiv logopreprintSep 28 2025
Timely and accurate diagnosis is crucial in addressing the global rise in thyroid cancer, ensuring effective treatment strategies and improved patient outcomes. We present an intelligent classification method that couples an Adaptive Convolutional Neural Network (CNN) with Cohen-Daubechies-Feauveau (CDF9/7) wavelets whose detail coefficients are modulated by an n-scroll chaotic system to enrich discriminative features. We evaluate on the public DDTI thyroid ultrasound dataset (n = 1,638 images; 819 malignant / 819 benign) using 5-fold cross-validation, where the proposed method attains 98.17% accuracy, 98.76% sensitivity, 97.58% specificity, 97.55% F1-score, and an AUC of 0.9912. A controlled ablation shows that adding chaotic modulation to CDF9/7 improves accuracy by +8.79 percentage points over a CDF9/7-only CNN (from 89.38% to 98.17%). To objectively position our approach, we trained state-of-the-art backbones on the same data and splits: EfficientNetV2-S (96.58% accuracy; AUC 0.987), Swin-T (96.41%; 0.986), ViT-B/16 (95.72%; 0.983), and ConvNeXt-T (96.94%; 0.987). Our method outperforms the best of these by +1.23 points in accuracy and +0.0042 in AUC, while remaining computationally efficient (28.7 ms per image; 1,125 MB peak VRAM). Robustness is further supported by cross-dataset testing on TCIA (accuracy 95.82%) and transfer to an ISIC skin-lesion subset (n = 28 unique images, augmented to 2,048; accuracy 97.31%). Explainability analyses (Grad-CAM, SHAP, LIME) highlight clinically relevant regions. Altogether, the wavelet-chaos-CNN pipeline delivers state-of-the-art thyroid ultrasound classification with strong generalization and practical runtime characteristics suitable for clinical integration.

Generation of multimodal realistic computational phantoms as a test-bed for validating deep learning-based cross-modality synthesis techniques.

Camagni F, Nakas A, Parrella G, Vai A, Molinelli S, Vitolo V, Barcellini A, Chalaszczyk A, Imparato S, Pella A, Orlandi E, Baroni G, Riboldi M, Paganelli C

pubmed logopapersSep 27 2025
The validation of multimodal deep learning models for medical image translation is limited by the lack of high-quality, paired datasets. We propose a novel framework that leverages computational phantoms to generate realistic CT and MRI images, enabling reliable ground-truth datasets for robust validation of artificial intelligence (AI) methods that generate synthetic CT (sCT) from MRI, specifically for radiotherapy applications. Two CycleGANs (cycle-consistent generative adversarial networks) were trained to transfer the imaging style of real patients onto CT and MRI phantoms, producing synthetic data with realistic textures and continuous intensity distributions. These data were evaluated through paired assessments with original phantoms, unpaired comparisons with patient scans, and dosimetric analysis using patient-specific radiotherapy treatment plans. Additional external validation was performed on public CT datasets to assess the generalizability to unseen data. The resulting, paired CT/MRI phantoms were used to validate a GAN-based model for sCT generation from abdominal MRI in particle therapy, available in the literature. Results showed strong anatomical consistency with original phantoms, high histogram correlation with patient images (HistCC = 0.998 ± 0.001 for MRI, HistCC = 0.97 ± 0.04 for CT), and dosimetric accuracy comparable to real data. The novelty of this work lies in using generated phantoms as validation data for deep learning-based cross-modality synthesis techniques.

Development of a clinical-CT-radiomics nomogram for predicting endoscopic red color sign in cirrhotic patients with esophageal varices.

Han J, Dong J, Yan C, Zhang J, Wang Y, Gao M, Zhang M, Chen Y, Cai J, Zhao L

pubmed logopapersSep 27 2025
To evaluate the predictive performance of a clinical-CT-radiomics nomogram based on radiomics signature and independent clinical-CT predictors for predicting endoscopic red color sign (RC) in cirrhotic patients with esophageal varices (EV). We retrospectively evaluated 215 cirrhotic patients. Among them, 108 and 107 cases were positive and negative for endoscopic RC, respectively. Patients were assigned to a training cohort (n = 150) and a validation cohort (n = 65) at a 7:3 ratio. In the training cohort, univariate and multivariate logistic regression analyses were performed on clinical and CT features to develop a clinical-CT model. Radiomic features were extracted from portal venous phase CT images to generate a Radiomic score (Rad-score) and to construct five machine learning models. A combined model was built using clinical-CT predictors and Rad-score through logistic regression. The performance of different models was evaluated using the receiver operating characteristic (ROC) curves and the area under the curve (AUC). The spleen-to-platelet ratio, liver volume, splenic vein diameter, and superior mesenteric vein diameter were independent predictors. Six radiomics features were selected to construct five machine learning models. The adaptive boosting model showed excellent predictive performance, achieving an AUC of 0.964 in the validation cohort, while the combined model achieved the highest predictive accuracy with an AUC of 0.985 in the validation cohort. The clinical-CT-radiomics nomogram demonstrates high predictive accuracy for endoscopic RC in cirrhotic patients with EV, which provides a novel tool for non-invasive prediction of esophageal varices bleeding.

Exploring learning transferability in deep segmentation of colorectal cancer liver metastases.

Abbas M, Badic B, Andrade-Miranda G, Bourbonne V, Jaouen V, Visvikis D, Conze PH

pubmed logopapersSep 26 2025
Ensuring the seamless transfer of knowledge and models across various datasets and clinical contexts is of paramount importance in medical image segmentation. This is especially true for liver lesion segmentation which plays a key role in pre-operative planning and treatment follow-up. Despite the progress of deep learning algorithms using Transformers, automatically segmenting small hepatic metastases remains a persistent challenge. This can be attributed to the degradation of small structures due to the intrinsic process of feature down-sampling inherent to many deep architectures, coupled with the imbalance between foreground metastases voxels and background. While similar challenges have been observed for liver tumors originated from hepatocellular carcinoma, their manifestation in the context of liver metastasis delineation remains under-explored and require well-defined guidelines. Through comprehensive experiments, this paper aims to bridge this gap and to demonstrate the impact of various transfer learning schemes from off-the-shelf datasets to a dataset containing liver metastases only. Our scale-specific evaluation reveals that models trained from scratch or with domain-specific pre-training demonstrate greater proficiency.

Efficacy of PSMA PET/CT radiomics analysis for risk stratification in newly diagnosed prostate cancer: a multicenter study.

Jafari E, Zarei A, Dadgar H, Keshavarz A, Abdollahi H, Samimi R, Manafi-Farid R, Divband G, Nikkholgh B, Fallahi B, Amini H, Ahmadzadehfar H, Rahmim A, Zohrabi F, Assadi M

pubmed logopapersSep 26 2025
Prostate-specific membrane antigen (PSMA) PET/CT plays an increasing role in prostate cancer management. Radiomics analysis of PSMA PET/CT images may provide additional information for risk stratification. This study aimed to evaluate the performance of PSMA PET/CT radiomics analysis in differentiating between Gleason Grade Groups (GGG 1–3 vs. GGG 4–5) and predicting PSA levels (below vs. at or above 20 ng/ml) in patients with newly diagnosed prostate cancer. In this multicenter study, patients with confirmed primary prostate cancer were enrolled who underwent [68Ga]Ga-PSMA PET/CT for staging. Inclusion criteria required intraprostatic lesions on PET and the International Society of Urological Pathology (ISUP) grade information. Three different segments were delineated including intraprostatic PSMA-avid lesions on PET, the whole prostate in PET, and the whole prostate in CT. Radiomic features (RFs) were extracted from all segments. Dimensionality reduction was achieved through principal component analysis (PCA) prior to model training on data from two centers (186 cases) with 10-fold cross-validation. Model performance was validated with external data set (57 cases) using various machine learning models including random forest, nearest centroid, support vector machine (SVM), calibrated classifier CV and logistic regression. In this retrospective study, 243 patients with a median age of 69 (range: 46–89) were enrolled. For distinguishing GGG 1–3 from GGG 4–5, the nearest centroid classifier using radiomic features (RFs) from whole-prostate PET achieved the best performance in the internal test set, while the random forest classifier using RFs from PSMA-avid lesions in PET performed best in the external test set. However, when considering both internal and external test sets, a calibrated classifier CV using RFs from PSMA-avid PET data showed slightly improved overall performance. Regarding PSA level classification (< 20 ng/ml vs. ≥20 ng/ml), the nearest centroid classifier using RFs from the whole prostate in PET achieved the best performance in the internal test set. In the external test set, the highest performance was observed using RFs derived from the concatenation of PET and CT. Notably, when combining both internal and external test sets, the best performance was again achieved with RFs from the concatenated PET/CT data. Our research suggests that [68Ga]Ga-PSMA PET/CT radiomic features, particularly features derived from intraprostatic PSMA-avid lesions, may provide valuable information for pre-biopsy risk stratification in newly diagnosed prostate cancer.

Integrating CT image reconstruction, segmentation, and large language models for enhanced diagnostic insight.

Abbasi AA, Farooqi AH

pubmed logopapersSep 25 2025
Deep learning has significantly advanced medical imaging, particularly computed tomography (CT), which is vital for diagnosing heart and cancer patients, evaluating treatments, and tracking disease progression. High-quality CT images enhance clinical decision-making, making image reconstruction a key research focus. This study develops a framework to improve CT image quality while minimizing reconstruction time. The proposed four-step medical image analysis framework includes reconstruction, preprocessing, segmentation, and image description. Initially, raw projection data undergoes reconstruction via a Radon transform to generate a sinogram, which is then used to construct a CT image of the pelvis. A convolutional neural network (CNN) ensures high-quality reconstruction. A bilateral filter reduces noise while preserving critical anatomical features. If required, a medical expert can review the image. The K-means clustering algorithm segments the preprocessed image, isolating the pelvis and removing irrelevant structures. Finally, the FuseCap model generates an automated textual description to assist radiologists. The framework's effectiveness is evaluated using peak signal-to-noise ratio (PSNR), normalized mean square error (NMSE), and structural similarity index measure (SSIM). The achieved values-PSNR 30.784, NMSE 0.032, and SSIM 0.877-demonstrate superior performance compared to existing methods. The proposed framework reconstructs high-quality CT images from raw projection data, integrating segmentation and automated descriptions to provide a decision-support tool for medical experts. By enhancing image clarity, segmenting outputs, and providing descriptive insights, this research aims to reduce the workload of frontline medical professionals and improve diagnostic efficiency.

A radiomics nomogram utilizing T2-weighted MRI for accurate diagnosis of rectocele.

Lai W, Wang G, Zhao Z

pubmed logopapersSep 25 2025
Rectocele (RC) is a common pelvic organ prolapse (POP) that can cause obstructed defecation and reduced quality of life. Magnetic resonance defecography (MRD) offers high-resolution, radiation-free visualization of pelvic floor anatomy but relies on time-consuming, observer-dependent manual measurements. Our research constructs a nomogram model incorporating intra-ROI and habitat radiomics features to improve MRD-based RC diagnosis. We retrospectively analyzed 222 MRD patients (155 training, 67 testing). Clinical features were selected via univariate and multivariate logistic regression. The least absolute shrinkage and selection operator (LASSO) algorithm was applied, and features with non-zero coefficients were retained to construct the radiomics signatures. A support vector machine (SVM) learning algorithm was used to construct the intra-ROI combined with the habitat radiomics model. Clinical features were then combined with radiomics features using a multivariable logistic regression algorithm to generate a clinical-radiomics nomogram. Model performance was assessed using receiver operating characteristic curve (ROC) and decision curve analysis (DCA). The combined intra-ROI and habitat radiomics model outperformed intra-ROI or habitat radiomics models alone, achieving areas under the curve (AUCs) of 0.913 (training) and 0.805 (testing). The nomogram integrating radiomics features and gender showed strong calibration and discrimination, with AUCs of 0.930 and 0.852 in the training and testing cohorts, respectively. Our findings suggest that integrating intra-ROI with habitat radiomics features can aid RC assessment. While the clinical-radiomics nomogram showed the highest internal performance, this single-center retrospective study lacks external validation and includes a relatively small test cohort. Therefore, risk of model overfitting cannot be excluded. Prospective, multi-center validation and larger cohorts are warranted before routine clinical deployment.

Artificial intelligence applications in thyroid cancer care.

Pozdeyev N, White SL, Bell CC, Haugen BR, Thomas J

pubmed logopapersSep 25 2025
Artificial intelligence (AI) has created tremendous opportunities to improve thyroid cancer care. We used the "artificial intelligence thyroid cancer" query to search the PubMed database until May 31, 2025. We highlight a set of high-impact publications selected based on technical innovation, large generalizable training datasets, and independent and/or prospective validation of AI. We review the key applications of AI for diagnosing and managing thyroid cancer. Our primary focus is on using computer vision to evaluate thyroid nodules on thyroid ultrasound, an area of thyroid AI that has gained the most attention from researchers and will likely have a significant clinical impact. We also highlight AI for detecting and predicting thyroid cancer neck lymph node metastases, digital cyto- and histopathology, large language models for unstructured data analysis, patient education, and other clinical applications. We discuss how thyroid AI technology has evolved and cite the most impactful research studies. Finally, we balance our excitement about the potential of AI to improve clinical care for thyroid cancer with current limitations, such as the lack of high-quality, independent prospective validation of AI in clinical trials, the uncertain added value of AI software, unknown performance on non-papillary thyroid cancer types, and the complexity of clinical implementation. AI promises to improve thyroid cancer diagnosis, reduce healthcare costs and enable personalized management. High-quality, independent prospective validation of AI in clinical trials is lacking and is necessary for the clinical community's broad adoption of this technology.

Deep learning in abdominopelvic digital subtraction angiography: a systematic review of interventional radiology applications.

Raskin D, Klang E, Barash Y, Korfiatis P, Partovi S, McCarthy CJ, Nadkarni G, Collins JD, Sorin V

pubmed logopapersSep 25 2025
Deep learning (DL) is increasingly explored in interventional radiology (IR) applications. This systematic review evaluates current DL-based applications for digital subtraction angiography (DSA) in abdominopelvic interventions, summarizes performance, and identifies gaps in the literature. Following PRISMA guidelines, we searched MEDLINE, Scopus, and Google Scholar for studies published up to February 1, 2025. English-language original articles assessing DL methods for automatic DSA image analysis were included, and study quality was evaluated with QUADAS-2. Nine studies were included. Two focused on hemorrhage detection, in which area under the curve (AUC) values ranged between 0.80-0.85. Four examined image enhancement, one performed vessel segmentation, and one applied classification of the anatomic location. Only a single study evaluated treatment response prediction, with an accuracy of 0.75. Most models were tested on small datasets from single centers, limiting their generalizability. Preliminary studies show that DL can improve hemorrhage detection, image quality, and vessel segmentation in DSA. However, larger, prospectively validated datasets are warranted. Currently no FDA-approved DL tools exist for abdominal or pelvic DSA. Future efforts should explore advanced generative AI and multimodal approaches.
Page 6 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.