Sort by:
Page 6 of 73727 results

An evaluation of rectum contours generated by artificial intelligence automatic contouring software using geometry, dosimetry and predicted toxicity.

Mc Laughlin O, Gholami F, Osman S, O'Sullivan JM, McMahon SJ, Jain S, McGarry CK

pubmed logopapersAug 7 2025
Objective&#xD;This study assesses rectum contours generated using a commercial deep learning auto-contouring model and compares them to clinician contours using geometry, changes in dosimetry and toxicity modelling. &#xD;Approach&#xD;This retrospective study involved 308 prostate cancer patients who were treated using 3D-conformal radiotherapy. Computed tomography images were input into Limbus Contour (v1.8.0b3) to generate auto-contour structures for each patient. Auto-contours were not edited after their generation.&#xD;Rectum auto-contours were compared to clinician contours geometrically and dosimetrically. Dice similarity coefficient (DSC), mean Hausdorff distance (HD) and volume difference were assessed. Dose-volume histogram (DVH) constraints (V41%-V100%) were compared, and a Wilcoxon signed rank test was used to evaluate statistical significance of differences. &#xD;Toxicity modelling to compare contours was carried out using equivalent uniform dose (EUD) and clinical factors of abdominal surgery and atrial fibrillation. Trained models were tested (80:20) in their prediction of grade 1 late rectal bleeding (ntotal=124) using area-under the receiver operating characteristic curve (AUC).&#xD;Main results&#xD;Median DSC (interquartile range (IQR)) was 0.85 (0.09), median HD was 1.38 mm (0.60 mm) and median volume difference was -1.73 cc (14.58 cc). Median DVH differences between contours were found to be small (<1.5%) for all constraints although systematically larger than clinician contours (p<0.05). However, an IQR up to 8.0% was seen for individual patients across all dose constraints.&#xD;Models using EUD alone derived from clinician or auto-contours had AUCs of 0.60 (0.10) and 0.60 (0.09). AUC for models involving clinical factors and dosimetry was 0.65 (0.09) and 0.66 (0.09) when using clinician contours and auto-contours.&#xD;Significance&#xD;Although median DVH metrics were similar, variation for individual patients highlights the importance of clinician review. Rectal bleeding prediction accuracy did not depend on the contour method for this cohort. The auto-contouring model used in this study shows promise in a supervised workflow.&#xD.

MLAgg-UNet: Advancing Medical Image Segmentation with Efficient Transformer and Mamba-Inspired Multi-Scale Sequence.

Jiang J, Lei S, Li H, Sun Y

pubmed logopapersAug 7 2025
Transformers and state space sequence models (SSMs) have attracted interest in biomedical image segmentation for their ability to capture long-range dependency. However, traditional visual state space (VSS) methods suffer from the incompatibility of image tokens with autoregressive assumption. Although Transformer attention does not require this assumption, its high computational cost limits effective channel-wise information utilization. To overcome these limitations, we propose the Mamba-Like Aggregated UNet (MLAgg-UNet), which introduces Mamba-inspired mechanism to enrich Transformer channel representation and exploit implicit autoregressive characteristic within U-shaped architecture. For establishing dependencies among image tokens in single scale, the Mamba-Like Aggregated Attention (MLAgg) block is designed to balance representational ability and computational efficiency. Inspired by the human foveal vision system, Mamba macro-structure, and differential attention, MLAgg block can slide its focus over each image token, suppress irrelevant tokens, and simultaneously strengthen channel-wise information utilization. Moreover, leveraging causal relationships between consecutive low-level and high-level features in U-shaped architecture, we propose the Multi-Scale Mamba Module with Implicit Causality (MSMM) to optimize complementary information across scales. Embedded within skip connections, this module enhances semantic consistency between encoder and decoder features. Extensive experiments on four benchmark datasets, including AbdomenMRI, ACDC, BTCV, and EndoVis17, which cover MRI, CT, and endoscopy modalities, demonstrate that the proposed MLAgg-UNet consistently outperforms state-of-the-art CNN-based, Transformer-based, and Mamba-based methods. Specifically, it achieves improvements of at least 1.24%, 0.20%, 0.33%, and 0.39% in DSC scores on these datasets, respectively. These results highlight the model's ability to effectively capture feature correlations and integrate complementary multi-scale information, providing a robust solution for medical image segmentation. The implementation is publicly available at https://github.com/aticejiang/MLAgg-UNet.

Hybrid Neural Networks for Precise Hydronephrosis Classification Using Deep Learning.

Salam A, Naznine M, Chowdhury MEH, Agzamkhodjaev S, Tekin A, Vallasciani S, Ramírez-Velázquez E, Abbas TO

pubmed logopapersAug 7 2025
To develop and evaluate a deep learning framework for automatic kidney and fluid segmentation in renal ultrasound images, aiming to enhance diagnostic accuracy and reduce variability in hydronephrosis assessment. A dataset of 1,731 renal ultrasound images, annotated by four experienced urologists, was used for model training and evaluation. The proposed framework integrates a DenseNet201 backbone, Feature Pyramid Network (FPN), and Self-Organizing Neural Network (SelfONN) layers to enable multi-scale feature extraction and improve spatial precision. Several architectures were tested under identical conditions to ensure fair comparison. Segmentation performance was assessed using standard metrics, including Dice coefficient, precision, and recall. The framework also supported hydronephrosis classification using the fluid-to-kidney area ratio, with a threshold of 0.213 derived from prior literature. The model achieved strong segmentation performance for kidneys (Dice: 0.92, precision: 0.93, recall: 0.91) and fluid regions (Dice: 0.89, precision: 0.90, recall: 0.88), outperforming baseline methods. The classification accuracy for detecting hydronephrosis reached 94%, based on the computed fluid-to-kidney ratio. Performance was consistent across varied image qualities, reflecting the robustness of the overall architecture. This study presents an automated, objective pipeline for analyzing renal ultrasound images. The proposed framework supports high segmentation accuracy and reliable classification, facilitating standardized and reproducible hydronephrosis assessment. Future work will focus on model optimization and incorporating explainable AI to enhance clinical integration.

Response Assessment in Hepatocellular Carcinoma: A Primer for Radiologists.

Mroueh N, Cao J, Srinivas Rao S, Ghosh S, Song OK, Kongboonvijit S, Shenoy-Bhangle A, Kambadakone A

pubmed logopapersAug 7 2025
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, necessitating accurate and early diagnosis to guide therapy, along with assessment of treatment response. Response assessment criteria have evolved from traditional morphologic approaches, such as WHO criteria and Response Evaluation Criteria in Solid Tumors (RECIST), to more recent methods focused on evaluating viable tumor burden, including European Association for Study of Liver (EASL) criteria, modified RECIST (mRECIST) and Liver Imaging Reporting and Data System (LI-RADS) Treatment Response (LI-TR) algorithm. This shift reflects the complex and evolving landscape of HCC treatment in the context of emerging systemic and locoregional therapies. Each of these criteria have their own nuanced strengths and limitations in capturing the detailed characteristics of HCC treatment and response assessment. The emergence of functional imaging techniques, including dual-energy CT, perfusion imaging, and rising use of radiomics, are enhancing the capabilities of response assessment. Growth in the realm of artificial intelligence and machine learning models provides an opportunity to refine the precision of response assessment by facilitating analysis of complex imaging data patterns. This review article provides a comprehensive overview of existing criteria, discusses functional and emerging imaging techniques, and outlines future directions for advancing HCC tumor response assessment.

Optimizing contrast-enhanced abdominal MRI: A comparative study of deep learning and standard VIBE techniques.

Herold A, Mercaldo ND, Anderson MA, Mojtahed A, Kilcoyne A, Lo WC, Sellers RM, Clifford B, Nickel MD, Nakrour N, Huang SY, Tsai LL, Catalano OA, Harisinghani MG

pubmed logopapersAug 7 2025
To validate a deep learning (DL) reconstruction technique for faster post-contrast enhanced coronal Volume Interpolated Breath-hold Examination (VIBE) sequences and assess its image quality compared to conventionally acquired coronal VIBE sequences. This prospective study included 151 patients undergoing clinically indicated upper abdominal MRI acquired on 3 T scanners. Two coronal T1 fat-suppressed VIBE sequences were acquired: a DL-reconstructed sequence (VIBE<sub>DL</sub>) and a standard sequence (VIBE<sub>SD</sub>). Three radiologists independently evaluated six image quality parameters: overall image quality, perceived signal-to-noise ratio, severity of artifacts, liver edge sharpness, liver vessel sharpness, and lesion conspicuity, using a 4-point Likert scale. Inter-reader agreement was assessed using Gwet's AC2. Ordinal mixed-effects regression models were used to compare VIBE<sub>DL</sub> and VIBE<sub>SD</sub>. Acquisition times were 10.2 s for VIBE<sub>DL</sub> compared to 22.3 s for VIBE<sub>SD</sub>. VIBE<sub>DL</sub> demonstrated superior overall image quality (OR 1.95, 95 % CI: 1.44-2.65, p < 0.001), reduced image noise (OR 3.02, 95 % CI: 2.26-4.05, p < 0.001), enhanced liver edge sharpness (OR 3.68, 95 % CI: 2.63-5.15, p < 0.001), improved liver vessel sharpness (OR 4.43, 95 % CI: 3.13-6.27, p < 0.001), and better lesion conspicuity (OR 9.03, 95 % CI: 6.34-12.85, p < 0.001) compared to VIBE<sub>SD</sub>. However, VIBE<sub>DL</sub> showed increased severity of peripheral artifacts (OR 0.13, p < 0.001). VIBE<sub>DL</sub> detected 137/138 (99.3 %) focal liver lesions, while VIBE<sub>SD</sub> detected 131/138 (94.9 %). Inter-reader agreement ranged from good to very good for both sequences. The DL-reconstructed VIBE sequence significantly outperformed the standard breath-hold VIBE in image quality and lesion detection, while reducing acquisition time. This technique shows promise for enhancing the diagnostic capabilities of contrast-enhanced abdominal MRI.

FedGIN: Federated Learning with Dynamic Global Intensity Non-linear Augmentation for Organ Segmentation using Multi-modal Images

Sachin Dudda Nagaraju, Ashkan Moradi, Bendik Skarre Abrahamsen, Mattijs Elschot

arxiv logopreprintAug 7 2025
Medical image segmentation plays a crucial role in AI-assisted diagnostics, surgical planning, and treatment monitoring. Accurate and robust segmentation models are essential for enabling reliable, data-driven clinical decision making across diverse imaging modalities. Given the inherent variability in image characteristics across modalities, developing a unified model capable of generalizing effectively to multiple modalities would be highly beneficial. This model could streamline clinical workflows and reduce the need for modality-specific training. However, real-world deployment faces major challenges, including data scarcity, domain shift between modalities (e.g., CT vs. MRI), and privacy restrictions that prevent data sharing. To address these issues, we propose FedGIN, a Federated Learning (FL) framework that enables multimodal organ segmentation without sharing raw patient data. Our method integrates a lightweight Global Intensity Non-linear (GIN) augmentation module that harmonizes modality-specific intensity distributions during local training. We evaluated FedGIN using two types of datasets: an imputed dataset and a complete dataset. In the limited dataset scenario, the model was initially trained using only MRI data, and CT data was added to assess its performance improvements. In the complete dataset scenario, both MRI and CT data were fully utilized for training on all clients. In the limited-data scenario, FedGIN achieved a 12 to 18% improvement in 3D Dice scores on MRI test cases compared to FL without GIN and consistently outperformed local baselines. In the complete dataset scenario, FedGIN demonstrated near-centralized performance, with a 30% Dice score improvement over the MRI-only baseline and a 10% improvement over the CT-only baseline, highlighting its strong cross-modality generalization under privacy constraints.

Development and validation of the multidimensional machine learning model for preoperative risk stratification in papillary thyroid carcinoma: a multicenter, retrospective cohort study.

Feng JW, Zhang L, Yang YX, Qin RJ, Liu SQ, Qin AC, Jiang Y

pubmed logopapersAug 6 2025
This study aims to develop and validate a multi-modal machine learning model for preoperative risk stratification in papillary thyroid carcinoma (PTC), addressing limitations of current systems that rely on postoperative pathological features. We analyzed 974 PTC patients from three medical centers in China using a multi-modal approach integrating: (1) clinical indicators, (2) immunological indices, (3) ultrasound radiomics features, and (4) CT radiomics features. Our methodology employed gradient boosting machine for feature selection and random forest for classification, with model interpretability provided through SHapley Additive exPlanations (SHAP) analysis. The model was validated on internal (n = 225) and two external cohorts (n = 51, n = 174). The final 15-feature model achieved AUCs of 0.91, 0.84, and 0.77 across validation cohorts, improving to 0.96, 0.95, and 0.89 after cohort-specific refitting. SHAP analysis revealed CT texture features, ultrasound morphological features, and immune-inflammatory markers as key predictors, with consistent patterns across validation sites despite center-specific variations. Subgroup analysis showed superior performance in tumors > 1 cm and patients without extrathyroidal extension. Our multi-modal machine learning approach provides accurate preoperative risk stratification for PTC with robust cross-center applicability. This computational framework for integrating heterogeneous imaging and clinical data demonstrates the potential of multi-modal joint learning in healthcare imaging to transform clinical decision-making by enabling personalized treatment planning.

A Comprehensive Framework for Uncertainty Quantification of Voxel-wise Supervised Models in IVIM MRI

Nicola Casali, Alessandro Brusaferri, Giuseppe Baselli, Stefano Fumagalli, Edoardo Micotti, Gianluigi Forloni, Riaz Hussein, Giovanna Rizzo, Alfonso Mastropietro

arxiv logopreprintAug 6 2025
Accurate estimation of intravoxel incoherent motion (IVIM) parameters from diffusion-weighted MRI remains challenging due to the ill-posed nature of the inverse problem and high sensitivity to noise, particularly in the perfusion compartment. In this work, we propose a probabilistic deep learning framework based on Deep Ensembles (DE) of Mixture Density Networks (MDNs), enabling estimation of total predictive uncertainty and decomposition into aleatoric (AU) and epistemic (EU) components. The method was benchmarked against non probabilistic neural networks, a Bayesian fitting approach and a probabilistic network with single Gaussian parametrization. Supervised training was performed on synthetic data, and evaluation was conducted on both simulated and two in vivo datasets. The reliability of the quantified uncertainties was assessed using calibration curves, output distribution sharpness, and the Continuous Ranked Probability Score (CRPS). MDNs produced more calibrated and sharper predictive distributions for the D and f parameters, although slight overconfidence was observed in D*. The Robust Coefficient of Variation (RCV) indicated smoother in vivo estimates for D* with MDNs compared to Gaussian model. Despite the training data covering the expected physiological range, elevated EU in vivo suggests a mismatch with real acquisition conditions, highlighting the importance of incorporating EU, which was allowed by DE. Overall, we present a comprehensive framework for IVIM fitting with uncertainty quantification, which enables the identification and interpretation of unreliable estimates. The proposed approach can also be adopted for fitting other physical models through appropriate architectural and simulation adjustments.

The development of a multimodal prediction model based on CT and MRI for the prognosis of pancreatic cancer.

Dou Z, Lin J, Lu C, Ma X, Zhang R, Zhu J, Qin S, Xu C, Li J

pubmed logopapersAug 6 2025
To develop and validate a hybrid radiomics model to predict the overall survival in pancreatic cancer patients and identify risk factors that affect patient prognosis. We conducted a retrospective analysis of 272 pancreatic cancer patients diagnosed at the First Affiliated Hospital of Soochow University from January 2013 to December 2023, and divided them into a training set and a test set at a ratio of 7:3. Pre-treatment contrast-enhanced computed tomography (CT), magnetic resonance imaging (MRI) images, and clinical features were collected. Dimensionality reduction was performed on the radiomics features using principal component analysis (PCA), and important features with non-zero coefficients were selected using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. In the training set, we built clinical prediction models using both random survival forests (RSF) and traditional Cox regression analysis. These models included a radiomics model based on contrast-enhanced CT, a radiomics model based on MRI, a clinical model, 3 bimodal models combining two types of features, and a multimodal model combining radiomics features with clinical features. Model performance evaluation in the test set was based on two dimensions: discrimination and calibration. In addition, risk stratification was performed in the test set based on predicted risk scores to evaluate the model's prognostic utility. The RSF-based hybrid model performed best with a C-index of 0.807 and a Brier score of 0.101, outperforming the COX hybrid model (C-index of 0.726 and a Brier score of 0.145) and other unimodal and bimodal models. The SurvSHAP(t) plot highlighted CA125 as the most important variable. In the test set, patients were stratified into high- and low-risk groups based on the predicted risk scores, and Kaplan-Meier analysis demonstrated a significant survival difference between the two groups (p < 0.0001). A multi-modal model using radiomics based on clinical tabular data and contrast-enhanced CT and MRI was developed by RSF, presenting strengths in predicting prognosis in pancreatic cancer patients.

Real-time 3D US-CT fusion-based semi-automatic puncture robot system: clinical evaluation.

Nakayama M, Zhang B, Kuromatsu R, Nakano M, Noda Y, Kawaguchi T, Li Q, Maekawa Y, Fujie MG, Sugano S

pubmed logopapersAug 5 2025
Conventional systems supporting percutaneous radiofrequency ablation (PRFA) have faced difficulties in ensuring safe and accurate puncture due to issues inherent to the medical images used and organ displacement caused by patients' respiration. To address this problem, this study proposes a semi-automatic puncture robot system that integrates real-time ultrasound (US) images with computed tomography (CT) images. The purpose of this paper is to evaluate the system's usefulness through a pilot clinical experiment involving participants. For the clinical experiment using the proposed system, an improved U-net model based on fivefold cross-validation was constructed. Following the workflow of the proposed system, the model was trained using US images acquired from patients with robotic arms. The average Dice coefficient for the entire validation dataset was confirmed to be 0.87. Therefore, the model was implemented in the robotic system and applied to clinical experiment. A clinical experiment was conducted using the robotic system equipped with the developed AI model on five adult male and female participants. The centroid distances between the point clouds from each modality were evaluated in the 3D US-CT fusion process, assuming the blood vessel centerline represents the overall structural position. The results of the centroid distances showed a minimum value of 0.38 mm, a maximum value of 4.81 mm, and an average of 1.97 mm. Although the five participants had different CP classifications and the derived US images exhibited individual variability, all centroid distances satisfied the ablation margin of 5.00 mm considered in PRFA, suggesting the potential accuracy and utility of the robotic system for puncture navigation. Additionally, the results suggested the potential generalization performance of the AI model trained with data acquired according to the robotic system's workflow.
Page 6 of 73727 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.