Sort by:
Page 58 of 58578 results

A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism.

Meng H, Zhao R, Zhang Y, Zhang B, Zhang C, Wang D, Sun J

pubmed logopapersJan 1 2025
Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish efficient and precise decision support, automated detection of plaques in coronary OCT images holds paramount importance. For addressing these challenges, we propose a novel deep learning algorithm featuring Dense Atrous Convolution (DAC) and attention mechanism to realize high-precision segmentation and classification of Coronary artery plaques. Then, a relatively well-established dataset covering 760 original images, expanded to 8,000 using data enhancement. This dataset serves as a significant resource for future research endeavors. The experimental results demonstrate that the dice coefficients of calcified, fibrous, and lipid plaques are 0.913, 0.900, and 0.879, respectively, surpassing those generated by five other conventional medical image segmentation networks. These outcomes strongly attest to the effectiveness and superiority of our proposed algorithm in the task of automatic coronary artery plaque segmentation.

SA-UMamba: Spatial attention convolutional neural networks for medical image segmentation.

Liu L, Huang Z, Wang S, Wang J, Liu B

pubmed logopapersJan 1 2025
Medical image segmentation plays an important role in medical diagnosis and treatment. Most recent medical image segmentation methods are based on a convolutional neural network (CNN) or Transformer model. However, CNN-based methods are limited by locality, whereas Transformer-based methods are constrained by the quadratic complexity of attention computations. Alternatively, the state-space model-based Mamba architecture has garnered widespread attention owing to its linear computational complexity for global modeling. However, Mamba and its variants are still limited in their ability to extract local receptive field features. To address this limitation, we propose a novel residual spatial state-space (RSSS) block that enhances spatial feature extraction by integrating global and local representations. The RSSS block combines the Mamba module for capturing global dependencies with a receptive field attention convolution (RFAC) module to extract location-sensitive local patterns. Furthermore, we introduce a residual adjust strategy to dynamically fuse global and local information, improving spatial expressiveness. Based on the RSSS block, we design a U-shaped SA-UMamba segmentation framework that effectively captures multi-scale spatial context across different stages. Experiments conducted on the Synapse, ISIC17, ISIC18 and CVC-ClinicDB datasets validate the segmentation performance of our proposed SA-UMamba framework.

Volumetric atlas of the rat inner ear from microCT and iDISCO+ cleared temporal bones.

Cossellu D, Vivado E, Batti L, Gantar I, Pizzala R, Perin P

pubmed logopapersJan 1 2025
Volumetric atlases are an invaluable tool in neuroscience and otolaryngology, greatly aiding experiment planning and surgical interventions, as well as the interpretation of experimental and clinical data. The rat is a major animal model for hearing and balance studies, and a detailed volumetric atlas for the rat central auditory system (Waxholm) is available. However, the Waxholm rat atlas only contains a low-resolution inner ear featuring five structures. In the present work, we segmented and annotated 34 structures in the rat inner ear, yielding a detailed volumetric inner ear atlas which can be integrated with the Waxholm rat brain atlas. We performed iodine-enhanced microCT and iDISCO+-based clearing and fluorescence lightsheet microscopy imaging on a sample of rat temporal bones. Image stacks were segmented in a semiautomated way, and 34 inner ear volumes were reconstructed from five samples. Using geometrical morphometry, high-resolution segmentations obtained from lightsheet and microCT stacks were registered into the coordinate system of the Waxholm rat atlas. Cleared sample autofluorescence was used for the reconstruction of most inner ear structures, including fluid-filled compartments, nerves and sensory epithelia, blood vessels, and connective tissue structures. Image resolution allowed reconstruction of thin ducts (reuniting, saccular and endolymphatic), and the utriculoendolymphatic valve. The vestibulocochlear artery coursing through bone was found to be associated to the reuniting duct, and to be visible both in cleared and microCT samples, thus allowing to infer duct location from microCT scans. Cleared labyrinths showed minimal shape distortions, as shown by alignment with microCT and Waxholm labyrinths. However, membranous labyrinths could display variable collapse of the superior division, especially the roof of canal ampullae, whereas the inferior division (saccule and cochlea) was well preserved, with the exception of Reissner's membrane that could display ruptures in the second cochlear turn. As an example of atlas use, the volumes reconstructed from segmentations were used to separate macrophage populations from the spiral ganglion, auditory neuron dendrites, and Organ of Corti. We have reconstructed 34 structures from the rat temporal bone, which are available as both image stacks and printable 3D objects in a shared repository for download. These can be used for teaching, localizing cells or other features within the ear, modeling auditory and vestibular sensory physiology and training of automated segmentation machine learning tools.

Cervical vertebral body segmentation in X-ray and magnetic resonance imaging based on YOLO-UNet: Automatic segmentation approach and available tool.

Wang H, Lu J, Yang S, Xiao Y, He L, Dou Z, Zhao W, Yang L

pubmed logopapersJan 1 2025
Cervical spine disorders are becoming increasingly common, particularly among sedentary populations. The accurate segmentation of cervical vertebrae is critical for diagnostic and research applications. Traditional segmentation methods are limited in terms of precision and applicability across imaging modalities. The aim of this study is to develop and evaluate a fully automatic segmentation method and a user-friendly tool for detecting cervical vertebral body using a combined neural network model based on the YOLOv11 and U-Net3 + models. A dataset of X-ray and magnetic resonance imaging (MRI) images was collected, enhanced, and annotated to include 2136 X-ray images and 2184 MRI images. The proposed YOLO-UNet ensemble model was trained and compared with four other groups of image extraction models, including YOLOv11, DeepLabV3+, U-Net3 + for direct image segmentation, and the YOLO-DeepLab network. The evaluation metrics included the Dice coefficient, Hausdorff distance, intersection over union, positive predictive value, and sensitivity. The YOLO-UNet model combined the advantages of the YOLO and U-Net models and demonstrated excellent vertebral body segmentation capabilities on both X-ray and MRI datasets, which were closer to the ground truth images. Compared with other models, it achieved greater accuracy and a more accurate depiction of the vertebral body shape, demonstrated better versatility, and exhibited superior performance across all evaluation indicators. The YOLO-UNet network model provided a robust and versatile solution for cervical vertebral body segmentation, demonstrating excellent accuracy and adaptability across imaging modalities on both X-ray and MRI datasets. The accompanying user-friendly tool enhanced usability, making it accessible to both clinical and research users. In this study, the challenge of large-scale medical annotation tasks was addressed, thereby reducing project costs and supporting advancements in medical information technology and clinical research.

3D-MRI brain glioma intelligent segmentation based on improved 3D U-net network.

Wang T, Wu T, Yang D, Xu Y, Lv D, Jiang T, Wang H, Chen Q, Xu S, Yan Y, Lin B

pubmed logopapersJan 1 2025
To enhance glioma segmentation, a 3D-MRI intelligent glioma segmentation method based on deep learning is introduced. This method offers significant guidance for medical diagnosis, grading, and treatment strategy selection. Glioma case data were sourced from the BraTS2023 public dataset. Firstly, we preprocess the dataset, including 3D clipping, resampling, artifact elimination and normalization. Secondly, in order to enhance the perception ability of the network to different scale features, we introduce the space pyramid pool module. Then, by making the model focus on glioma details and suppressing irrelevant background information, we propose a multi-scale fusion attention mechanism; And finally, to address class imbalance and enhance learning of misclassified voxels, a combination of Dice and Focal loss functions was employed, creating a loss function, this method not only maintains the accuracy of segmentation, It also improves the recognition of challenge samples, thus improving the accuracy and generalization of the model in glioma segmentation. Experimental findings reveal that the enhanced 3D U-Net network model stabilizes training loss at 0.1 after 150 training iterations. The refined model demonstrates superior performance with the highest DSC, Recall, and Precision values of 0.7512, 0.7064, and 0.77451, respectively. In Whole Tumor (WT) segmentation, the Dice Similarity Coefficient (DSC), Recall, and Precision scores are 0.9168, 0.9426, and 0.9375, respectively. For Core Tumor (TC) segmentation, these scores are 0.8954, 0.9014, and 0.9369, respectively. In Enhanced Tumor (ET) segmentation, the method achieves DSC, Recall, and Precision values of 0.8674, 0.9045, and 0.9011, respectively. The DSC, Recall, and Precision indices in the WT, TC, and ET segments using this method are the highest recorded, significantly enhancing glioma segmentation. This improvement bolsters the accuracy and reliability of diagnoses, ultimately providing a scientific foundation for clinical diagnosis and treatment.

Verity plots: A novel method of visualizing reliability assessments of artificial intelligence methods in quantitative cardiovascular magnetic resonance.

Hadler T, Ammann C, Saad H, Grassow L, Reisdorf P, Lange S, Däuber S, Schulz-Menger J

pubmed logopapersJan 1 2025
Artificial intelligence (AI) methods have established themselves in cardiovascular magnetic resonance (CMR) as automated quantification tools for ventricular volumes, function, and myocardial tissue characterization. Quality assurance approaches focus on measuring and controlling AI-expert differences but there is a need for tools that better communicate reliability and agreement. This study introduces the Verity plot, a novel statistical visualization that communicates the reliability of quantitative parameters (QP) with clear agreement criteria and descriptive statistics. Tolerance ranges for the acceptability of the bias and variance of AI-expert differences were derived from intra- and interreader evaluations. AI-expert agreement was defined by bias confidence and variance tolerance intervals being within bias and variance tolerance ranges. A reliability plot was designed to communicate this statistical test for agreement. Verity plots merge reliability plots with density and a scatter plot to illustrate AI-expert differences. Their utility was compared against Correlation, Box and Bland-Altman plots. Bias and variance tolerance ranges were established for volume, function, and myocardial tissue characterization QPs. Verity plots provided insights into statstistcal properties, outlier detection, and parametric test assumptions, outperforming Correlation, Box and Bland-Altman plots. Additionally, they offered a framework for determining the acceptability of AI-expert bias and variance. Verity plots offer markers for bias, variance, trends and outliers, in addition to deciding AI quantification acceptability. The plots were successfully applied to various AI methods in CMR and decisively communicated AI-expert agreement.

AI-Assisted 3D Planning of CT Parameters for Personalized Femoral Prosthesis Selection in Total Hip Arthroplasty.

Yang TJ, Qian W

pubmed logopapersJan 1 2025
To investigate the efficacy of CT measurement parameters combined with AI-assisted 3D planning for personalized femoral prosthesis selection in total hip arthroplasty (THA). A retrospective analysis was conducted on clinical data from 247 patients with unilateral hip or knee joint disorders treated at Renmin Hospital of Hubei University of Medicine between April 2021 and February 2024. All patients underwent preoperative full-pelvis and bilateral full-length femoral CT scans. The raw CT data were imported into Mimics 19.0 software to reconstruct a three-dimensional (3D) model of the healthy femur. Using 3-matic Research 11.0 software, the femoral head rotation center was located, and parameters including femoral head diameter (FHD), femoral neck length (FNL), femoral neck-shaft angle (FNSA), femoral offset (FO), femoral neck anteversion angle (FNAA), tip-apex distance (TAD), and tip-apex angle (TAA) were measured. AI-assisted THA 3D planning system AIJOINT V1.0.0.0 software was used for preoperative planning and design, enabling personalized selection of femoral prostheses with varying neck-shaft angles and surgical simulation. Groups were compared by gender, age, and parameters. ROC curves evaluated prediction efficacy. Females exhibited smaller FHD, FNL, FO, TAD, TAA but larger FNSA/FNAA vs males (P<0.05). Patients >65 years had higher FO, TAD, TAA (P<0.05). TAD-TAA correlation was strong (r=0.954), while FNSA negatively correlated with TAD/TAA (r=-0.773/-0.701). ROC analysis demonstrated high predictive accuracy: TAD (AUC=0.891, sensitivity=91.7%, specificity=87.6%) and TAA (AUC=0.882, sensitivity=100%, specificity=88.8%). CT parameters (TAA, TAD, FNSA, FO) are interrelated and effective predictors for femoral prosthesis selection. Integration with AI-assisted planning optimizes personalized THA, reducing biomechanical mismatch risks.

Refining CT image analysis: Exploring adaptive fusion in U-nets for enhanced brain tissue segmentation.

Chen BC, Shen CY, Chai JW, Hwang RH, Chiang WC, Chou CH, Liu WM

pubmed logopapersJan 1 2025
Non-contrast Computed Tomography (NCCT) quickly diagnoses acute cerebral hemorrhage or infarction. However, Deep-Learning (DL) algorithms often generate false alarms (FA) beyond the cerebral region. We introduce an enhanced brain tissue segmentation method for infarction lesion segmentation (ILS). This method integrates an adaptive result fusion strategy to confine the search operation within cerebral tissue, effectively reducing FAs. By leveraging fused brain masks, DL-based ILS algorithms focus on pertinent radiomic correlations. Various U-Net models underwent rigorous training, with exploration of diverse fusion strategies. Further refinement entailed applying a 9x9 Gaussian filter with unit standard deviation followed by binarization to mitigate false positives. Performance evaluation utilized Intersection over Union (IoU) and Hausdorff Distance (HD) metrics, complemented by external validation on a subset of the COCO dataset. Our study comprised 20 ischemic stroke patients (14 males, 4 females) with an average age of 68.9 ± 11.7 years. Fusion with UNet2+ and UNet3 + yielded an IoU of 0.955 and an HD of 1.33, while fusion with U-net, UNet2 + , and UNet3 + resulted in an IoU of 0.952 and an HD of 1.61. Evaluation on the COCO dataset demonstrated an IoU of 0.463 and an HD of 584.1 for fusion with UNet2+ and UNet3 + , and an IoU of 0.453 and an HD of 728.0 for fusion with U-net, UNet2 + , and UNet3 + . Our adaptive fusion strategy significantly diminishes FAs and enhances the training efficacy of DL-based ILS algorithms, surpassing individual U-Net models. This methodology holds promise as a versatile, data-independent approach for cerebral lesion segmentation.
Page 58 of 58578 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.