Sort by:
Page 58 of 2352345 results

Decoding MGMT Methylation: A Step Towards Precision Medicine in Glioblastoma

Hafeez Ur Rehman, Sumaiya Fazal, Moutaz Alazab, Ali Baydoun

arxiv logopreprintAug 22 2025
Glioblastomas, constituting over 50% of malignant brain tumors, are highly aggressive brain tumors that pose substantial treatment challenges due to their rapid progression and resistance to standard therapies. The methylation status of the O-6-Methylguanine-DNA Methyltransferase (MGMT) gene is a critical biomarker for predicting patient response to treatment, particularly with the alkylating agent temozolomide. However, accurately predicting MGMT methylation status using non-invasive imaging techniques remains challenging due to the complex and heterogeneous nature of glioblastomas, that includes, uneven contrast, variability within lesions, and irregular enhancement patterns. This study introduces the Convolutional Autoencoders for MGMT Methylation Status Prediction (CAMP) framework, which is based on adaptive sparse penalties to enhance predictive accuracy. The CAMP framework operates in two phases: first, generating synthetic MRI slices through a tailored autoencoder that effectively captures and preserves intricate tissue and tumor structures across different MRI modalities; second, predicting MGMT methylation status using a convolutional neural network enhanced by adaptive sparse penalties. The adaptive sparse penalty dynamically adjusts to variations in the data, such as contrast differences and tumor locations in MR images. Our method excels in MRI image synthesis, preserving brain tissue, fat, and individual tumor structures across all MRI modalities. Validated on benchmark datasets, CAMP achieved an accuracy of 0.97, specificity of 0.98, and sensitivity of 0.97, significantly outperforming existing methods. These results demonstrate the potential of the CAMP framework to improve the interpretation of MRI data and contribute to more personalized treatment strategies for glioblastoma patients.

Unlocking the potential of radiomics in identifying fibrosing and inflammatory patterns in interstitial lung disease.

Colligiani L, Marzi C, Uggenti V, Colantonio S, Tavanti L, Pistelli F, Alì G, Neri E, Romei C

pubmed logopapersAug 22 2025
To differentiate interstitial lung diseases (ILDs) with fibrotic and inflammatory patterns using high-resolution computed tomography (HRCT) and a radiomics-based artificial intelligence (AI) pipeline. This single-center study included 84 patients: 50 with idiopathic pulmonary fibrosis (IPF)-representative of fibrotic pattern-and 34 with cellular non-specific interstitial pneumonia (NSIP) secondary to connective tissue disease (CTD)-as an example of mostly inflammatory pattern. For a secondary objective, we analyzed 50 additional patients with COVID-19 pneumonia. We performed semi-automatic segmentation of ILD regions using a deep learning model followed by manual review. From each segmented region, 103 radiomic features were extracted. Classification was performed using an XGBoost model with 1000 bootstrap repetitions and SHapley Additive exPlanations (SHAP) were applied to identify the most predictive features. The model accurately distinguished a fibrotic ILD pattern from an inflammatory ILD one, achieving an average test set accuracy of 0.91 and AUROC of 0.98. The classification was driven by radiomic features capturing differences in lung morphology, intensity distribution, and textural heterogeneity between the two disease patterns. In differentiating cellular NSIP from COVID-19, the model achieved an average accuracy of 0.89. Inflammatory ILDs exhibited more uniform imaging patterns compared to the greater variability typically observed in viral pneumonia. Radiomics combined with explainable AI offers promising diagnostic support in distinguishing fibrotic from inflammatory ILD patterns and differentiating inflammatory ILDs from viral pneumonias. This approach could enhance diagnostic precision and provide quantitative support for personalized ILD management.

Vision Transformer Autoencoders for Unsupervised Representation Learning: Revealing Novel Genetic Associations through Learned Sparse Attention Patterns

Islam, S. R., He, W., Xie, Z., Zhi, D.

medrxiv logopreprintAug 21 2025
The discovery of genetic loci associated with brain architecture can provide deeper insights into neuroscience and potentially lead to improved personalized medicine outcomes. Previously, we designed the Unsupervised Deep learning-derived Imaging Phenotypes (UDIPs) approach to extract phenotypes from brain imaging using a convolutional (CNN) autoencoder, and conducted brain imaging GWAS on UK Biobank (UKBB). In this work, we design a vision transformer (ViT)-based autoencoder, leveraging its distinct inductive bias and its ability to capture unique patterns through its pairwise attention mechanism. The encoder generates contextual embeddings for input patches, from which we derive a 128-dimensional latent representation, interpreted as phenotypes, by applying average pooling. The GWAS on these 128 phenotypes discovered 10 loci previously unreported by CNN-based UDIP model, 3 of which had no previous associations with brain structure in the GWAS Catalog. Our interpretation results suggest that these novel associations stem from the ViTs capability to learn sparse attention patterns, enabling the capturing of non-local patterns such as left-right hemisphere symmetry within brain MRI data. Our results highlight the advantages of transformer-based architectures in feature extraction and representation learning for genetic discovery.

Multimodal Integration in Health Care: Development With Applications in Disease Management.

Hao Y, Cheng C, Li J, Li H, Di X, Zeng X, Jin S, Han X, Liu C, Wang Q, Luo B, Zeng X, Li K

pubmed logopapersAug 21 2025
Multimodal data integration has emerged as a transformative approach in the health care sector, systematically combining complementary biological and clinical data sources such as genomics, medical imaging, electronic health records, and wearable device outputs. This approach provides a multidimensional perspective of patient health that enhances the diagnosis, treatment, and management of various medical conditions. This viewpoint presents an overview of the current state of multimodal integration in health care, spanning clinical applications, current challenges, and future directions. We focus primarily on its applications across different disease domains, particularly in oncology and ophthalmology. Other diseases are briefly discussed due to the few available literature. In oncology, the integration of multimodal data enables more precise tumor characterization and personalized treatment plans. Multimodal fusion demonstrates accurate prediction of anti-human epidermal growth factor receptor 2 therapy response (area under the curve=0.91). In ophthalmology, multimodal integration through the combination of genetic and imaging data facilitates the early diagnosis of retinal diseases. However, substantial challenges remain regarding data standardization, model deployment, and model interpretability. We also highlight the future directions of multimodal integration, including its expanded disease applications, such as neurological and otolaryngological diseases, and the trend toward large-scale multimodal models, which enhance accuracy. Overall, the innovative potential of multimodal integration is expected to further revolutionize the health care industry, providing more comprehensive and personalized solutions for disease management.

Initial Recurrence Risk Stratification of Papillary Thyroid Cancer Based on Intratumoral and Peritumoral Dual Energy CT Radiomics.

Zhou Y, Xu Y, Si Y, Wu F, Xu X

pubmed logopapersAug 21 2025
This study aims to evaluate the potential of Dual-Energy Computed Tomography (DECT)-based radiomics in preoperative risk stratification for the prediction of initial recurrence in Papillary Thyroid Carcinoma (PTC). The retrospective analysis included 236 PTC cases (165 in the training cohort, 71 in the validation cohort) collected between July 2020 and June 2021. Tumor segmentation was carried out in both intratumoral and peritumoral areas (1 mm inner and outer to the tumor boundary). Three regionspecific rad-scores were developed (rad-score [VOI<sup>whole</sup>], rad-score [VOI<sup>outer layer</sup>], and rad-score [VOI<sup>inner layer</sup>]), respectively. Three radiomics models incorporating these rad-scores and additional risk factors were compared to a clinical model alone. The optimal radiomics model was presented as a nomogram. Rad-scores from peritumoral regions (VOI<sup>outer layer</sup> and VOI<sup>inner layer</sup>) outperformed the intratumoral rad-score (VOI<sup>whole</sup>). All radiomics models surpassed the clinical model, with peritumoral-based models (radiomics models 2 and 3) outperforming the intratumoral-based model (radiomics model 1). The top-performing nomogram, which included tumor size, tumor site, and rad-score (VOI<sup>inner layer</sup>), achieved an Area Under the Curve (AUC) of 0.877 in the training cohort and 0.876 in the validation cohort. The nomogram demonstrated good calibration, clinical utility, and stability. DECT-based intratumoral and peritumoral radiomics advance PTC initial recurrence risk prediction, providing clinical radiology with precise predictive tools. Further work is needed to refine the model and enhance its clinical application. Radiomics analysis of DECT, particularly in peritumoral regions, offers valuable predictive information for assessing the risk of initial recurrence in PTC.

Integrating Imaging-Derived Clinical Endotypes with Plasma Proteomics and External Polygenic Risk Scores Enhances Coronary Microvascular Disease Risk Prediction

Venkatesh, R., Cherlin, T., Penn Medicine BioBank,, Ritchie, M. D., Guerraty, M., Verma, S. S.

medrxiv logopreprintAug 21 2025
Coronary microvascular disease (CMVD) is an underdiagnosed but significant contributor to the burden of ischemic heart disease, characterized by angina and myocardial infarction. The development of risk prediction models such as polygenic risk scores (PRS) for CMVD has been limited by a lack of large-scale genome-wide association studies (GWAS). However, there is significant overlap between CMVD and enrollment criteria for coronary artery disease (CAD) GWAS. In this study, we developed CMVD PRS models by selecting variants identified in a CMVD GWAS and applying weights from an external CAD GWAS, using CMVD-associated loci as proxies for the genetic risk. We integrated plasma proteomics, clinical measures from perfusion PET imaging, and PRS to evaluate their contributions to CMVD risk prediction in comprehensive machine and deep learning models. We then developed a novel unsupervised endotyping framework for CMVD from perfusion PET-derived myocardial blood flow data, revealing distinct patient subgroups beyond traditional case-control definitions. This imaging-based stratification substantially improved classification performance alongside plasma proteomics and PRS, achieving AUROCs between 0.65 and 0.73 per class, significantly outperforming binary classifiers and existing clinical models, highlighting the potential of this stratification approach to enable more precise and personalized diagnosis by capturing the underlying heterogeneity of CMVD. This work represents the first application of imaging-based endotyping and the integration of genetic and proteomic data for CMVD risk prediction, establishing a framework for multimodal modeling in complex diseases.

Predicting Radiation Pneumonitis Integrating Clinical Information, Medical Text, and 2.5D Deep Learning Features in Lung Cancer.

Wang W, Ren M, Ren J, Dang J, Zhao X, Li C, Wang Y, Li G

pubmed logopapersAug 21 2025
To construct a prediction model for radiation pneumonitis (RP) in lung cancer patients based on clinical information, medical text, and 2.5D deep learning (DL) features. A total of 356 patients with lung cancer from the Heping Campus of the First Hospital of China Medical University were randomly divided at a 7:3 ratio into training and validation cohorts, and 238 patients from 3 other centers were included in the testing cohort for assessing model generalizability. We used the term frequency-inverse document frequency method to generate numerical vectors from computed tomography (CT) report texts. The CT and radiation therapy dose slices demonstrating the largest lung region of interest across the coronal and transverse planes were considered as the central slice; moreover, 3 slices above and below the central slice were selected to create comprehensive 2.5D data. We extracted DL features via DenseNet121, DenseNet201, and Twins-SVT and integrated them via multi-instance learning (MIL) fusion. The performances of the 2D and 3D DL models were also compared with the performance of the 2.5D MIL model. Finally, RP prediction models based on clinical information, medical text, and 2.5D DL features were constructed, validated, and tested. The 2.5D MIL model based on CT was significantly better than the 2D and 3D DL models in the training, validation, and test cohorts. The 2.5D MIL model based on radiation therapy dose was considered to be the optimal model in the test1 cohort, whereas the 2D model was considered to be the optimal model in the training, validation, and test3 cohorts, with the 3D model being the optimal model in the test2 cohort. A combined model achieved Area Under Curve values of 0.964, 0.877, 0.868, 0.884, and 0.849 in the training, validation, test1, test2, and test3 cohorts, respectively. We propose an RP prediction model that integrates clinical information, medical text, and 2.5D MIL features, which provides new ideas for predicting the side effects of radiation therapy.

Mapping the Evolution of Thyroid Ultrasound Research: A 30-Year Bibliometric Analysis.

Jiang T, Yang C, Wu L, Li X, Zhang J

pubmed logopapersAug 21 2025
Thyroid ultrasound has emerged as a critical diagnostic modality, attracting substantial research attention. This bibliometric analysis systematically maps the 30-year evolution of thyroid ultrasound research to identify developmental trends, research hotspots, and emerging frontiers. English-language articles and reviews (1994-2023) from Web of Science Core Collection were extracted. Bibliometric analysis was performed using VOSviewer and CiteSpace to examine collaborative networks among countries/institutions/authors, reference timeline visualization, and keyword burst detection. A total of 8,489 documents were included for further analysis. An overall upward trend in research publications was found. China, the United States, and Italy were the productive countries, while the United States, Italy, and South Korea had the greatest influence. The journal Thyroid obtained the highest IF. The keywords with the greatest strength were "disorders", "thyroid volume", and "association guidelines". The timeline view of reference demonstrated that deep learning, ultrasound-based risk stratification systems, and radiofrequency ablation were the latest reference clusters. Three dominant themes emerged: the ultrasound characteristics of thyroid disorders, the application of new techniques, and the assessment of the risk of malignancy of thyroid nodules. Applications of deep learning and the development and improvement of correlation guides such as TIRADS are the present focus of research. The specific application efficacy and improvement of TI-RADS and the optimization of deep learning algorithms and their clinical applicability will be the focus of subsequent research.

TPA: Temporal Prompt Alignment for Fetal Congenital Heart Defect Classification

Darya Taratynova, Alya Almsouti, Beknur Kalmakhanbet, Numan Saeed, Mohammad Yaqub

arxiv logopreprintAug 21 2025
Congenital heart defect (CHD) detection in ultrasound videos is hindered by image noise and probe positioning variability. While automated methods can reduce operator dependence, current machine learning approaches often neglect temporal information, limit themselves to binary classification, and do not account for prediction calibration. We propose Temporal Prompt Alignment (TPA), a method leveraging foundation image-text model and prompt-aware contrastive learning to classify fetal CHD on cardiac ultrasound videos. TPA extracts features from each frame of video subclips using an image encoder, aggregates them with a trainable temporal extractor to capture heart motion, and aligns the video representation with class-specific text prompts via a margin-hinge contrastive loss. To enhance calibration for clinical reliability, we introduce a Conditional Variational Autoencoder Style Modulation (CVAESM) module, which learns a latent style vector to modulate embeddings and quantifies classification uncertainty. Evaluated on a private dataset for CHD detection and on a large public dataset, EchoNet-Dynamic, for systolic dysfunction, TPA achieves state-of-the-art macro F1 scores of 85.40% for CHD diagnosis, while also reducing expected calibration error by 5.38% and adaptive ECE by 6.8%. On EchoNet-Dynamic's three-class task, it boosts macro F1 by 4.73% (from 53.89% to 58.62%). Temporal Prompt Alignment (TPA) is a framework for fetal congenital heart defect (CHD) classification in ultrasound videos that integrates temporal modeling, prompt-aware contrastive learning, and uncertainty quantification.

Dynamic-Attentive Pooling Networks: A Hybrid Lightweight Deep Model for Lung Cancer Classification.

Ayivi W, Zhang X, Ativi WX, Sam F, Kouassi FAP

pubmed logopapersAug 21 2025
Lung cancer is one of the leading causes of cancer-related mortality worldwide. The diagnosis of this disease remains a challenge due to the subtle and ambiguous nature of early-stage symptoms and imaging findings. Deep learning approaches, specifically Convolutional Neural Networks (CNNs), have significantly advanced medical image analysis. However, conventional architectures such as ResNet50 that rely on first-order pooling often fall short. This study aims to overcome the limitations of CNNs in lung cancer classification by proposing a novel and dynamic model named LungSE-SOP. The model is based on Second-Order Pooling (SOP) and Squeeze-and-Excitation Networks (SENet) within a ResNet50 backbone to improve feature representation and class separation. A novel Dynamic Feature Enhancement (DFE) module is also introduced, which dynamically adjusts the flow of information through SOP and SENet blocks based on learned importance scores. The model was trained using a publicly available IQ-OTH/NCCD lung cancer dataset. The performance of the model was assessed using various metrics, including the accuracy, precision, recall, F1-score, ROC curves, and confidence intervals. For multiclass tumor classification, our model achieved 98.6% accuracy for benign, 98.7% for malignant, and 99.9% for normal cases. Corresponding F1-scores were 99.2%, 99.8%, and 99.9%, respectively, reflecting the model's high precision and recall across all tumor types and its strong potential for clinical deployment.
Page 58 of 2352345 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.