Sort by:
Page 58 of 58579 results

MRI based early Temporal Lobe Epilepsy detection using DGWO based optimized HAETN and Fuzzy-AAL Segmentation Framework (FASF).

Khan H, Alutaibi AI, Tejani GG, Sharma SK, Khan AR, Ahmad F, Mousavirad SJ

pubmed logopapersJan 1 2025
This work aims to promote early and accurate diagnosis of Temporal Lobe Epilepsy (TLE) by developing state-of-the-art deep learning techniques, with the goal of minimizing the consequences of epilepsy on individuals and society. Current approaches for TLE detection have drawbacks, including applicability to particular MRI sequences, moderate ability to determine the side of the onset zones, and weak cross-validation with different patient groups, which hampers their practical use. To overcome these difficulties, a new Hybrid Attention-Enhanced Transformer Network (HAETN) is introduced for early TLE diagnosis. This approach uses newly developed Fuzzy-AAL Segmentation Framework (FASF) which is a combination of Fuzzy Possibilistic C-Means (FPCM) algorithm for segmentation of tissue and AAL labelling for labelling of tissues. Furthermore, an effective feature selection method is proposed using the Dipper- grey wolf optimization (DGWO) algorithm to improve the performance of the proposed model. The performance of the proposed method is thoroughly assessed by accuracy, sensitivity, and F1-score. The performance of the suggested approach is evaluated on the Temporal Lobe Epilepsy-UNAM MRI Dataset, where it attains an accuracy of 98.61%, a sensitivity of 99.83%, and F1-score of 99.82%, indicating its efficiency and applicability in clinical practice.

Deep learning-based fine-grained assessment of aneurysm wall characteristics using 4D-CT angiography.

Kumrai T, Maekawa T, Chen Y, Sugiyama Y, Takagaki M, Yamashiro S, Takizawa K, Ichinose T, Ishida F, Kishima H

pubmed logopapersJan 1 2025
This study proposes a novel deep learning-based approach for aneurysm wall characteristics, including thin-walled (TW) and hyperplastic-remodeling (HR) regions. We analyzed fifty-two unruptured cerebral aneurysms employing 4D-computed tomography angiography (4D-CTA) and intraoperative recordings. The TW and HR regions were identified in intraoperative images. The 3D trajectories of observation points on aneurysm walls were processed to compute a time series of 3D speed, acceleration, and smoothness of motion, aiming to evaluate the aneurysm wall characteristics. To facilitate point-level risk evaluation using the time-series data, we developed a convolutional neural network (CNN)-long- short-term memory (LSTM)-based regression model enriched with attention layers. In order to accommodate patient heterogeneity, a patient-independent feature extraction mechanism was introduced. Furthermore, unlabeled data were incorporated to enhance the data-intensive deep model. The proposed method achieved an average diagnostic accuracy of 92%, significantly outperforming a simpler model lacking attention. These results underscore the significance of patient-independent feature extraction and the use of unlabeled data. This study demonstrates the efficacy of a fine-grained deep learning approach in predicting aneurysm wall characteristics using 4D-CTA. Notably, incorporating an attention-based network structure proved to be particularly effective, contributing to enhanced performance.

Radiomics machine learning based on asymmetrically prominent cortical and deep medullary veins combined with clinical features to predict prognosis in acute ischemic stroke: a retrospective study.

Li H, Chang C, Zhou B, Lan Y, Zang P, Chen S, Qi S, Ju R, Duan Y

pubmed logopapersJan 1 2025
Acute ischemic stroke (AIS) has a poor prognosis and a high recurrence rate. Predicting the outcomes of AIS patients in the early stages of the disease is therefore important. The establishment of intracerebral collateral circulation significantly improves the survival of brain cells and the outcomes of AIS patients. However, no machine learning method has been applied to investigate the correlation between the dynamic evolution of intracerebral venous collateral circulation and AIS prognosis. Therefore, we employed a support vector machine (SVM) algorithm to analyze asymmetrically prominent cortical veins (APCVs) and deep medullary veins (DMVs) to establish a radiomic model for predicting the prognosis of AIS by combining clinical indicators. The magnetic resonance imaging (MRI) data and clinical indicators of 150 AIS patients were retrospectively analyzed. Regions of interest corresponding to the DMVs and APCVs were delineated, and least absolute shrinkage and selection operator (LASSO) regression was used to select features extracted from these regions. An APCV-DMV radiomic model was created via the SVM algorithm, and independent clinical risk factors associated with AIS were combined with the radiomic model to generate a joint model. The SVM algorithm was selected because of its proven efficacy in handling high-dimensional radiomic data compared with alternative classifiers (<i>e.g.</i>, random forest) in pilot experiments. Nine radiomic features associated with AIS patient outcomes were ultimately selected. In the internal training test set, the AUCs of the clinical, DMV-APCV radiomic and joint models were 0.816, 0.976 and 0.996, respectively. The DeLong test revealed that the predictive performance of the joint model was better than that of the individual models, with a test set AUC of 0.996, sensitivity of 0.905, and specificity of 1.000 (<i>P</i> < 0.05). Using radiomic methods, we propose a novel joint predictive model that combines the imaging histologic features of the APCV and DMV with clinical indicators. This model quantitatively characterizes the morphological and functional attributes of venous collateral circulation, elucidating its important role in accurately evaluating the prognosis of patients with AIS and providing a noninvasive and highly accurate imaging tool for early prognostic prediction.

3D-MRI brain glioma intelligent segmentation based on improved 3D U-net network.

Wang T, Wu T, Yang D, Xu Y, Lv D, Jiang T, Wang H, Chen Q, Xu S, Yan Y, Lin B

pubmed logopapersJan 1 2025
To enhance glioma segmentation, a 3D-MRI intelligent glioma segmentation method based on deep learning is introduced. This method offers significant guidance for medical diagnosis, grading, and treatment strategy selection. Glioma case data were sourced from the BraTS2023 public dataset. Firstly, we preprocess the dataset, including 3D clipping, resampling, artifact elimination and normalization. Secondly, in order to enhance the perception ability of the network to different scale features, we introduce the space pyramid pool module. Then, by making the model focus on glioma details and suppressing irrelevant background information, we propose a multi-scale fusion attention mechanism; And finally, to address class imbalance and enhance learning of misclassified voxels, a combination of Dice and Focal loss functions was employed, creating a loss function, this method not only maintains the accuracy of segmentation, It also improves the recognition of challenge samples, thus improving the accuracy and generalization of the model in glioma segmentation. Experimental findings reveal that the enhanced 3D U-Net network model stabilizes training loss at 0.1 after 150 training iterations. The refined model demonstrates superior performance with the highest DSC, Recall, and Precision values of 0.7512, 0.7064, and 0.77451, respectively. In Whole Tumor (WT) segmentation, the Dice Similarity Coefficient (DSC), Recall, and Precision scores are 0.9168, 0.9426, and 0.9375, respectively. For Core Tumor (TC) segmentation, these scores are 0.8954, 0.9014, and 0.9369, respectively. In Enhanced Tumor (ET) segmentation, the method achieves DSC, Recall, and Precision values of 0.8674, 0.9045, and 0.9011, respectively. The DSC, Recall, and Precision indices in the WT, TC, and ET segments using this method are the highest recorded, significantly enhancing glioma segmentation. This improvement bolsters the accuracy and reliability of diagnoses, ultimately providing a scientific foundation for clinical diagnosis and treatment.

Convolutional neural network using magnetic resonance brain imaging to predict outcome from tuberculosis meningitis.

Dong THK, Canas LS, Donovan J, Beasley D, Thuong-Thuong NT, Phu NH, Ha NT, Ourselin S, Razavi R, Thwaites GE, Modat M

pubmed logopapersJan 1 2025
Tuberculous meningitis (TBM) leads to high mortality, especially amongst individuals with HIV. Predicting the incidence of disease-related complications is challenging, for which purpose the value of brain magnetic resonance imaging (MRI) has not been well investigated. We used a convolutional neural network (CNN) to explore the complementary contribution of brain MRI to the conventional prognostic determinants. We pooled data from two randomised control trials of HIV-positive and HIV-negative adults with clinical TBM in Vietnam to predict the occurrence of death or new neurological complications in the first two months after the subject's first MRI session. We developed and compared three models: a logistic regression with clinical, demographic and laboratory data as reference, a CNN that utilised only T1-weighted MRI volumes, and a model that fused all available information. All models were fine-tuned using two repetitions of 5-fold cross-validation. The final evaluation was based on a random 70/30 training/test split, stratified by the outcome and HIV status. Based on the selected model, we explored the interpretability maps derived from the models. 215 patients were included, with an event prevalence of 22.3%. On the test set our non-imaging model had higher AUC (71.2% [Formula: see text] 1.1%) than the imaging-only model (67.3% [Formula: see text] 2.6%). The fused model was superior to both, with an average AUC = 77.3% [Formula: see text] 4.0% in the test set. The non-imaging variables were more informative in the HIV-positive group, while the imaging features were more predictive in the HIV-negative group. All three models performed better in the HIV-negative cohort. The interpretability maps show the model's focus on the lateral fissures, the corpus callosum, the midbrain, and peri-ventricular tissues. Imaging information can provide added value to predict unwanted outcomes of TBM. However, to confirm this finding, a larger dataset is needed.

Brain tumor classification using MRI images and deep learning techniques.

Wong Y, Su ELM, Yeong CF, Holderbaum W, Yang C

pubmed logopapersJan 1 2025
Brain tumors pose a significant medical challenge, necessitating early detection and precise classification for effective treatment. This study aims to address this challenge by introducing an automated brain tumor classification system that utilizes deep learning (DL) and Magnetic Resonance Imaging (MRI) images. The main purpose of this research is to develop a model that can accurately detect and classify different types of brain tumors, including glioma, meningioma, pituitary tumors, and normal brain scans. A convolutional neural network (CNN) architecture with pretrained VGG16 as the base model is employed, and diverse public datasets are utilized to ensure comprehensive representation. Data augmentation techniques are employed to enhance the training dataset, resulting in a total of 17,136 brain MRI images across the four classes. The accuracy of this model was 99.24%, a higher accuracy than other similar works, demonstrating its potential clinical utility. This higher accuracy was achieved mainly due to the utilization of a large and diverse dataset, the improvement of network configuration, the application of a fine-tuning strategy to adjust pretrained weights, and the implementation of data augmentation techniques in enhancing classification performance for brain tumor detection. In addition, a web application was developed by leveraging HTML and Dash components to enhance usability, allowing for easy image upload and tumor prediction. By harnessing artificial intelligence (AI), the developed system addresses the need to reduce human error and enhance diagnostic accuracy. The proposed approach provides an efficient and reliable solution for brain tumor classification, facilitating early diagnosis and enabling timely medical interventions. This work signifies a potential advancement in brain tumor classification, promising improved patient care and outcomes.

Recognition of flight cadets brain functional magnetic resonance imaging data based on machine learning analysis.

Ye L, Weng S, Yan D, Ma S, Chen X

pubmed logopapersJan 1 2025
The rapid advancement of the civil aviation industry has attracted significant attention to research on pilots. However, the brain changes experienced by flight cadets following their training remain, to some extent, an unexplored territory compared to those of the general population. The aim of this study was to examine the impact of flight training on brain function by employing machine learning(ML) techniques. We collected resting-state functional magnetic resonance imaging (resting-state fMRI) data from 79 flight cadets and ground program cadets, extracting blood oxygenation level-dependent (BOLD) signal, amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) metrics as feature inputs for ML models. After conducting feature selection using a two-sample t-test, we established various ML classification models, including Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), and Gaussian Naive Bayes (GNB). Comparative analysis of the model results revealed that the LR classifier based on BOLD signals could accurately distinguish flight cadets from the general population, achieving an AUC of 83.75% and an accuracy of 0.93. Furthermore, an analysis of the features contributing significantly to the ML classification models indicated that these features were predominantly located in brain regions associated with auditory-visual processing, motor function, emotional regulation, and cognition, primarily within the Default Mode Network (DMN), Visual Network (VN), and SomatoMotor Network (SMN). These findings suggest that flight-trained cadets may exhibit enhanced functional dynamics and cognitive flexibility.

RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology.

Liu W, Guo X

pubmed logopapersJan 1 2025
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.

Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.

Tong B, Edwards T, Yang S, Hou B, Tarzanagh DA, Urbanowicz RJ, Moore JH, Ritchie MD, Davatzikos C, Shen L

pubmed logopapersJan 1 2024
Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.
Page 58 of 58579 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.