Sort by:
Page 568 of 7597590 results

Warman A, Moorthy D, Gensler R, Horowtiz MA, Ellis J, Tomasovic L, Srinivasan E, Ahmed K, Azad TD, Anderson WS, Rincon-Torroella J, Bettegowda C

pubmed logopapersJun 24 2025
Laser interstitial thermal therapy (LiTT) has emerged as a minimally invasive, MRI-guided treatment of brain tumors that are otherwise considered inoperable because of their location or the patient's poor surgical candidacy. By directing thermal energy at neoplastic lesions while minimizing damage to surrounding healthy tissue, LiTT offers promising therapeutic outcomes for both newly diagnosed and recurrent tumors. However, challenges such as postprocedural edema, unpredictable heat diffusion near blood vessels and ventricles in real time underscore the need for improved planning and monitoring. Incorporating artificial intelligence (AI) presents a viable solution to many of these obstacles. AI has already demonstrated effectiveness in optimizing surgical trajectories, predicting seizure-free outcomes in epilepsy cases, and generating heat distribution maps to guide real-time ablation. This technology could be similarly deployed in neurosurgical oncology to identify patients most likely to benefit from LiTT, refine trajectory planning, and predict tissue-specific heat responses. Despite promising initial studies, further research is needed to establish the robust data sets and clinical trials necessary to develop and validate AI-driven LiTT protocols. Such advancements have the potential to bolster LiTT's efficacy, minimize complications, and ultimately transform the neurosurgical management of primary and metastatic brain tumors.

Guo Y, Gong B, Li Y, Mo P, Chen Y, Fan Q, Sun Q, Miao L, Li Y, Liu Y, Tan W, Yang L, Zheng C

pubmed logopapersJun 24 2025
Radiomics analyzes quantitative features from medical images to reveal tumor heterogeneity, offering new insights for diagnosis, prognosis, and treatment prediction. This study explored radiomics based biomarkers to predict immunotherapy response and its association with the tumor microenvironment in non-small cell lung cancer (NSCLC) using unsupervised machine learning models derived from CT imaging. This study included 1539 NSCLC patients from seven independent cohorts. For 1834 radiomic features extracted from 869 NSCLC patients, K-means unsupervised clustering was applied to identify radiomic subtypes. A random forest model extended subtype classification to external cohorts, model accuracy, sensitivity, and specificity were evaluated. By conducting bulk RNA sequencing (RNA-seq) and single-cell transcriptome sequencing (scRNA-seq) of tumors, the immune microenvironment characteristics of tumors can be obtained to evaluate the association between radiomic subtypes and immunotherapy efficacy, immune scores, and immune cells infiltration. Unsupervised clustering stratified NSCLC patients into two subtypes (Cluster 1 and Cluster 2). Principal component analysis confirmed significant distinctions between subtypes across all cohorts. Cluster 2 exhibited significantly longer median overall survival (35 vs. 30 months, P = 0.006) and progression-free survival (19 vs. 16 months, P = 0.020) compared to Cluster 1. Multivariate Cox regression identified radiomic subtype as an independent predictor of overall survival (HR: 0.738, 95% CI 0.583-0.935, P = 0.012), validated in two external cohorts. Bulk RNA seq showed elevated interaction signaling and immune scores in Cluster 2 and scRNA-seq demonstrated higher proportions of T cells, B cells, and NK cells in Cluster 2. This study establishes a radiomic subtype associated with NSCLC immunotherapy efficacy and tumor immune microenvironment. The findings provide a non-invasive tool for personalized treatment, enabling early identification of immunotherapy-responsive patients and optimized therapeutic strategies.

Zhang J, Liu J, Guo M, Zhang X, Xiao W, Chen F

pubmed logopapersJun 24 2025
The clinical utility of the DeepSeek-V3 (DSV3) model in enhancing the accuracy of Liver Imaging Reporting and Data System (LI-RADS, LR) classification remains underexplored. This study aimed to evaluate the diagnostic performance of DSV3 in LR classifications compared to radiologists with varying levels of experience and to assess its potential as a decision-support tool in clinical practice. A dual-phase retrospective-prospective study analyzed 426 liver lesions (300 retrospective, 126 prospective) in high-risk HCC patients who underwent Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Three radiologists (one junior, two seniors) independently classified lesions using LR v2018 criteria, while DSV3 analyzed unstructured radiology reports to generate corresponding classifications. In the prospective cohort, DSV3 processed inputs in both Chinese and English to evaluate language impact. Performance was compared using chi-square test or Fisher's exact test, with pathology as the gold standard. In the retrospective cohort, DSV3 significantly outperformed junior radiologists in diagnostically challenging categories: LR-3 (17.8% vs. 39.7%, p<0.05), LR-4 (80.4% vs. 46.2%, p<0.05), and LR-5 (86.2% vs. 66.7%, p<0.05), while showing comparable accuracy in LR-1 (90.8% vs. 88.7%), LR-2 (11.9% vs. 25.6%), and LR-M (79.5% vs. 62.1%) classifications (all p>0.05). Prospective validation confirmed these findings, with DSV3 demonstrating superior performance for LR-3 (13.3% vs. 60.0%), LR-4 (93.3% vs. 66.7%), and LR-5 (93.5% vs. 67.7%) compared to junior radiologists (all p<0.05). Notably, DSV3 achieved diagnostic parity with senior radiologists across all categories (p>0.05) and maintained consistent performance between Chinese and English inputs. The DSV3 model effectively improves diagnostic accuracy of LR-3 to LR-5 classifications among junior radiologists . Its language-independent performance and ability to match senior-level expertise suggest strong potential for clinical implementation to standardize HCC diagnosis and optimize treatment decisions.

Yuanhe Tian, Lei Mao, Yan Song

arxiv logopreprintJun 24 2025
Generating reports for computed tomography (CT) images is a challenging task, while similar to existing studies for medical image report generation, yet has its unique characteristics, such as spatial encoding of multiple images, alignment between image volume and texts, etc. Existing solutions typically use general 2D or 3D image processing techniques to extract features from a CT volume, where they firstly compress the volume and then divide the compressed CT slices into patches for visual encoding. These approaches do not explicitly account for the transformations among CT slices, nor do they effectively integrate multi-level image features, particularly those containing specific organ lesions, to instruct CT report generation (CTRG). In considering the strong correlation among consecutive slices in CT scans, in this paper, we propose a large language model (LLM) based CTRG method with recurrent visual feature extraction and stereo attentions for hierarchical feature modeling. Specifically, we use a vision Transformer to recurrently process each slice in a CT volume, and employ a set of attentions over the encoded slices from different perspectives to selectively obtain important visual information and align them with textual features, so as to better instruct an LLM for CTRG. Experiment results and further analysis on the benchmark M3D-Cap dataset show that our method outperforms strong baseline models and achieves state-of-the-art results, demonstrating its validity and effectiveness.

Mahajan C, Kapoor I, Prabhakar H

pubmed logopapersJun 24 2025
Brain ultrasound is a popular point-of-care test that helps visualize brain structures. This review highlights recent developments in brain ultrasonography. There is a need to keep pace with the ongoing technological advancements and establishing standardized quality criteria for improving its utility in clinical practice. Newer automated indices derived from transcranial Doppler help establish its role as a noninvasive monitor of intracranial pressure and diagnosing vasospasm/delayed cerebral ischemia. A novel robotic transcranial Doppler system equipped with artificial intelligence allows real-time continuous neuromonitoring. Intraoperative ultrasound assists neurosurgeons in real-time localization of brain lesions and helps in assessing the extent of resection, thereby enhancing surgical precision and safety. Optic nerve sheath diameter point-of-care ultrasonography is an effective means of diagnosing raised intracranial pressure, triaging, and prognostication. The quality criteria checklist can help standardize this technique. Newer advancements like focused ultrasound, contrast-enhanced ultrasound, and functional ultrasound have also been discussed. Brain ultrasound continues to be a critical bedside tool in neurologically injured patients. With the advent of technological advancements, its utility has widened and its capabilities have expanded, making it more accurate and versatile in clinical practice.

Mubaraq Yakubu, Navodini Wijethilake, Jonathan Shapey, Andrew King, Alexander Hammers

arxiv logopreprintJun 24 2025
Purpose: Accurate segmentation of both the pituitary gland and adenomas from magnetic resonance imaging (MRI) is essential for diagnosis and treatment of pituitary adenomas. This systematic review evaluates automatic segmentation methods for improving the accuracy and efficiency of MRI-based segmentation of pituitary adenomas and the gland itself. Methods: We reviewed 34 studies that employed automatic and semi-automatic segmentation methods. We extracted and synthesized data on segmentation techniques and performance metrics (such as Dice overlap scores). Results: The majority of reviewed studies utilized deep learning approaches, with U-Net-based models being the most prevalent. Automatic methods yielded Dice scores of 0.19--89.00\% for pituitary gland and 4.60--96.41\% for adenoma segmentation. Semi-automatic methods reported 80.00--92.10\% for pituitary gland and 75.90--88.36\% for adenoma segmentation. Conclusion: Most studies did not report important metrics such as MR field strength, age and adenoma size. Automated segmentation techniques such as U-Net-based models show promise, especially for adenoma segmentation, but further improvements are needed to achieve consistently good performance in small structures like the normal pituitary gland. Continued innovation and larger, diverse datasets are likely critical to enhancing clinical applicability.

Ahmad Mustafa, Reza Rastegar, Ghassan AlRegib

arxiv logopreprintJun 24 2025
Prostate gland segmentation from T2-weighted MRI is a critical yet challenging task in clinical prostate cancer assessment. While deep learning-based methods have significantly advanced automated segmentation, most conventional approaches-particularly 2D convolutional neural networks (CNNs)-fail to leverage inter-slice anatomical continuity, limiting their accuracy and robustness. Fully 3D models offer improved spatial coherence but require large amounts of annotated data, which is often impractical in clinical settings. To address these limitations, we propose a hybrid architecture that models MRI sequences as spatiotemporal data. Our method uses a deep, pretrained DeepLabV3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices while preserving spatial structure. This combination enables context-aware segmentation with improved consistency, particularly in data-limited and noisy imaging conditions. We evaluate our method on the PROMISE12 benchmark under both clean and contrast-degraded test settings. Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), and Dice Similarity Coefficient (DSC), highlighting its potential for robust clinical deployment.

Zhuowei Xu, Han Li, Dai Sun, Zhicheng Li, Yujia Li, Qingpeng Kong, Zhiwei Cheng, Nassir Navab, S. Kevin Zhou

arxiv logopreprintJun 24 2025
Cone Beam Computed Tomography (CBCT) is widely used in medical imaging. However, the limited number and intensity of X-ray projections make reconstruction an ill-posed problem with severe artifacts. NeRF-based methods have achieved great success in this task. However, they suffer from a local-global training mismatch between their two key components: the hash encoder and the neural network. Specifically, in each training step, only a subset of the hash encoder's parameters is used (local sparse), whereas all parameters in the neural network participate (global dense). Consequently, hash features generated in each step are highly misaligned, as they come from different subsets of the hash encoder. These misalignments from different training steps are then fed into the neural network, causing repeated inconsistent global updates in training, which leads to unstable training, slower convergence, and degraded reconstruction quality. Aiming to alleviate the impact of this local-global optimization mismatch, we introduce a Normalized Hash Encoder, which enhances feature consistency and mitigates the mismatch. Additionally, we propose a Mapping Consistency Initialization(MCI) strategy that initializes the neural network before training by leveraging the global mapping property from a well-trained model. The initialized neural network exhibits improved stability during early training, enabling faster convergence and enhanced reconstruction performance. Our method is simple yet effective, requiring only a few lines of code while substantially improving training efficiency on 128 CT cases collected from 4 different datasets, covering 7 distinct anatomical regions.

Xuesong Li, Dianye Huang, Yameng Zhang, Nassir Navab, Zhongliang Jiang

arxiv logopreprintJun 24 2025
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.

Yang Xing, Jiong Wu, Yuheng Bu, Kuang Gong

arxiv logopreprintJun 24 2025
Although new vision foundation models such as Segment Anything Model 2 (SAM2) have significantly enhanced zero-shot image segmentation capabilities, reliance on human-provided prompts poses significant challenges in adapting SAM2 to medical image segmentation tasks. Moreover, SAM2's performance in medical image segmentation was limited by the domain shift issue, since it was originally trained on natural images and videos. To address these challenges, we proposed SAM2 with support-set guided prompting (SAM2-SGP), a framework that eliminated the need for manual prompts. The proposed model leveraged the memory mechanism of SAM2 to generate pseudo-masks using image-mask pairs from a support set via a Pseudo-mask Generation (PMG) module. We further introduced a novel Pseudo-mask Attention (PMA) module, which used these pseudo-masks to automatically generate bounding boxes and enhance localized feature extraction by guiding attention to relevant areas. Furthermore, a low-rank adaptation (LoRA) strategy was adopted to mitigate the domain shift issue. The proposed framework was evaluated on both 2D and 3D datasets across multiple medical imaging modalities, including fundus photography, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound. The results demonstrated a significant performance improvement over state-of-the-art models, such as nnUNet and SwinUNet, as well as foundation models, such as SAM2 and MedSAM2, underscoring the effectiveness of the proposed approach. Our code is publicly available at https://github.com/astlian9/SAM_Support.
Page 568 of 7597590 results
Show
per page

Ready to Sharpen Your Edge?

Subscribe to join 7,600+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.