Sort by:
Page 55 of 1241236 results

HALSR-Net: Improving CNN Segmentation of Cardiac Left Ventricle MRI with Hybrid Attention and Latent Space Reconstruction.

Fakhfakh M, Sarry L, Clarysse P

pubmed logopapersJul 1 2025
Accurate cardiac MRI segmentation is vital for detailed cardiac analysis, yet the manual process is labor-intensive and prone to variability. Despite advancements in MRI technology, there remains a significant need for automated methods that can reliably and efficiently segment cardiac structures. This paper introduces HALSR-Net, a novel multi-level segmentation architecture designed to improve the accuracy and reproducibility of cardiac segmentation from Cine-MRI acquisitions, focusing on the left ventricle (LV). The methodology consists of two main phases: first, the extraction of the region of interest (ROI) using a regression model that accurately predicts the location of a bounding box around the LV; second, the semantic segmentation step based on HALSR-Net architecture. This architecture incorporates a Hybrid Attention Pooling Module (HAPM) that merges attention and pooling mechanisms to enhance feature extraction and capture contextual information. Additionally, a reconstruction module leverages latent space features to further improve segmentation accuracy. Experiments conducted on an in-house clinical dataset and two public datasets (ACDC and LVQuan19) demonstrate that HALSR-Net outperforms state-of-the-art architectures, achieving up to 98% accuracy and F1-score for the segmentation of the LV cavity and myocardium. The proposed approach effectively addresses the limitations of existing methods, offering a more accurate and robust solution for cardiac MRI segmentation, thereby likely to improve cardiac function analysis and patient care.

The implementation of artificial intelligence in serial monitoring of post gamma knife vestibular schwannomas: A pilot study.

Singh M, Jester N, Lorr S, Briano A, Schwartz N, Mahajan A, Chiang V, Tommasini SM, Wiznia DH, Buono FD

pubmed logopapersJul 1 2025
Vestibular schwannomas (VS) are benign tumors that can lead to hearing loss, balance issues, and tinnitus. Gamma Knife Radiosurgery (GKS) is a common treatment for VS, aimed at halting tumor growth and preserving neurological function. Accurate monitoring of VS volume before and after GKS is essential for assessing treatment efficacy. To evaluate the accuracy of an artificial intelligence (AI) algorithm, originally developed to identify NF2-SWN-related VS, in segmenting non-NF2-SWN-related VS and detecting volume changes pre- and post-GKS. We hypothesize this AI algorithm, trained on NF2-SWN-related VS data, will accurately apply to non-NF2-SWN VS and VS treated with GKS. In this retrospective cohort study, we reviewed data from an established Gamma Knife database, identifying 16 patients who underwent GKS for VS and had pre- and post-GKS scans. Contrast-enhanced T1-weighted MRI scans were analyzed with both manual segmentation and the AI algorithm. DICE similarity coefficients were computed to compare AI and manual segmentations, and a paired t-test was used to assess statistical significance. Volume changes for pre- and post-GKS scans were calculated for both segmentation methods. The mean DICE score between AI and manual segmentations was 0.91 (range 0.79-0.97). Pre- and post-GKS DICE scores were 0.91 (range 0.79-0.97) and 0.92 (range 0.81-0.97), indicating high spatial overlap. AI-segmented VS volumes pre- and post-GKS were consistent with manual measurements, with high DICE scores indicating strong spatial overlap. The AI algorithm processed scans within 5 min, suggesting it offers a reliable, efficient alternative for clinical monitoring. DICE scores showed high similarity between manual and AI segmentations. The pre- and post-GKS VS volume percentage changes were also similar between manual and AI-segmented VS volumes, indicating that our AI algorithm can accurately detect changes in tumor growth.

How I Do It: Three-Dimensional MR Neurography and Zero Echo Time MRI for Rendering of Peripheral Nerve and Bone.

Lin Y, Tan ET, Campbell G, Breighner RE, Fung M, Wolfe SW, Carrino JA, Sneag DB

pubmed logopapersJul 1 2025
MR neurography sequences provide excellent nerve-to-background soft tissue contrast, whereas a zero echo time (ZTE) MRI sequence provides cortical bone contrast. By demonstrating the spatial relationship between nerves and bones, a combination of rendered three-dimensional (3D) MR neurography and ZTE sequences provides a roadmap for clinical decision-making, particularly for surgical intervention. In this article, the authors describe the method for fused rendering of peripheral nerve and bone by combining nerve and bone structures from 3D MR neurography and 3D ZTE MRI, respectively. The described method includes scanning acquisition, postprocessing that entails deep learning-based reconstruction techniques, and rendering techniques. Representative case examples demonstrate the steps and clinical use of these techniques. Challenges in nerve and bone rendering are also discussed.

Spondyloarthritis Research and Treatment Network (SPARTAN) Clinical and Imaging Year in Review 2024.

Ferrandiz-Espadin R, Liew JW

pubmed logopapersJul 1 2025
Diagnostic delay remains a critical challenge in axial spondyloarthritis (axSpA). This review highlights key clinical and imaging research from 2024 that addresses this persistent issue, with a focus on the evolving roles of MRI, artificial intelligence (AI), and updated Canadian management recommendations. Multiple studies published in 2024 emphasized the continued problem of diagnostic delay in axSpA. Studies support the continued use of sacroiliac joint MRI as a central diagnostic tool for axSpA, particularly in patients with chronic back pain and associated conditions like uveitis, psoriasis (PsO), or inflammatory bowel disease. AI-based tools for interpreting sacroiliac joint MRIs demonstrated moderate agreement with expert assessments, offering a potential solution to variability and limited access to expert musculoskeletal radiology. These innovations may support earlier diagnosis and reduce misclassification. Innovative models of care, including patient-initiated telemedicine visits, reduced in-person visit frequency without compromising clinical outcomes in patients with stable axSpA. Updated Canadian treatment guidelines introduced more robust data on Janus kinase (JAK) inhibitors and offered stronger support for tapering biologics in patients with sustained low disease activity or remission, while advising against abrupt discontinuation. This clinical and imaging year in review covers challenges and innovations in axSpA, emphasizing the need for early access to care and the development of tools to support prompt diagnosis and sustained continuity of care.

Prediction of early recurrence in primary central nervous system lymphoma based on multimodal MRI-based radiomics: A preliminary study.

Wang X, Wang S, Zhao X, Chen L, Yuan M, Yan Y, Sun X, Liu Y, Sun S

pubmed logopapersJul 1 2025
To evaluate the role of multimodal magnetic resonance imaging radiomics features in predicting early recurrence of primary central nervous system lymphoma (PCNSL) and to investigate their correlation with patient prognosis. A retrospective analysis was conducted on 145 patients with PCNSL who were treated with high-dose methotrexate-based chemotherapy. Clinical data and MRI images were collected, with tumor regions segmented using ITK-SNAP software. Radiomics features were extracted via Pyradiomics, and predictive models were developed using various machine learning algorithms. The predictive performance of these models was assessed using receiver operating characteristic (ROC) curves. Additionally, Cox regression analysis was employed to identify risk factors associated with progression-free survival (PFS). In the cohort of 145 PCNSL patients (72 recurrence, 73 non-recurrence), clinical characteristics were comparable between groups except for multiple lesion frequency (61.1% vs. 39.7%, p < 0.05) and not receiving consolidation therapy (44.4% vs. 13.7%, p < 0.05). A total of 2392 radiomics features were extracted from CET1 and T2WI MRI sequence. Combining clinical variables, 10 features were retained after the feature selection process. The logistic regression (LR) model exhibited superior predictive performance in the test set to predict PCNSL early relapse, with an area under the curve (AUC) of 0.887 (95 % confidence interval: 0.785-0.988). Multivariate Cox regression identified the Cli-Rad score as an independent prognostic factor for PFS. Significant difference in PFS was observed between high- and low-risk groups defined by Cli-Rad score (8.24 months vs. 24.17 months, p < 0.001). The LR model based on multimodal MRI radiomics and clinical features, can effectively predict early recurrence of PCNSL, while the Cli-Rad score could independently forecast PFS among PCNSL patients.

Deep Learning Reveals Liver MRI Features Associated With PNPLA3 I148M in Steatotic Liver Disease.

Chen Y, Laevens BPM, Lemainque T, Müller-Franzes GA, Seibel T, Dlugosch C, Clusmann J, Koop PH, Gong R, Liu Y, Jakhar N, Cao F, Schophaus S, Raju TB, Raptis AA, van Haag F, Joy J, Loomba R, Valenti L, Kather JN, Brinker TJ, Herzog M, Costa IG, Hernando D, Schneider KM, Truhn D, Schneider CV

pubmed logopapersJul 1 2025
Steatotic liver disease (SLD) is the most common liver disease worldwide, affecting 30% of the global population. It is strongly associated with the interplay of genetic and lifestyle-related risk factors. The genetic variant accounting for the largest fraction of SLD heritability is PNPLA3 I148M, which is carried by 23% of the western population and increases the risk of SLD two to three-fold. However, identification of variant carriers is not part of routine clinical care and prevents patients from receiving personalised care. We analysed MRI images and common genetic variants in PNPLA3, TM6SF2, MTARC1, HSD17B13 and GCKR from a cohort of 45 603 individuals from the UK Biobank. Proton density fat fraction (PDFF) maps were generated using a water-fat separation toolbox, applied to the magnitude and phase MRI data. The liver region was segmented using a U-Net model trained on 600 manually segmented ground truth images. The resulting liver masks and PDFF maps were subsequently used to calculate liver PDFF values. Individuals with (PDFF ≥ 5%) and without SLD (PDFF < 5%) were selected as the study cohort and used to train and test a Vision Transformer classification model with five-fold cross validation. We aimed to differentiate individuals who are homozygous for the PNPLA3 I148M variant from non-carriers, as evaluated by the area under the receiver operating characteristic curve (AUROC). To ensure a clear genetic contrast, all heterozygous individuals were excluded. To interpret our model, we generated attention maps that highlight the regions that are most predictive of the outcomes. Homozygosity for the PNPLA3 I148M variant demonstrated the best predictive performance among five variants with AUROC of 0.68 (95% CI: 0.64-0.73) in SLD patients and 0.57 (95% CI: 0.52-0.61) in non-SLD patients. The AUROCs for the other SNPs ranged from 0.54 to 0.57 in SLD patients and from 0.52 to 0.54 in non-SLD patients. The predictive performance was generally higher in SLD patients compared to non-SLD patients. Attention maps for PNPLA3 I148M carriers showed that fat deposition in regions adjacent to the hepatic vessels, near the liver hilum, plays an important role in predicting the presence of the I148M variant. Our study marks novel progress in the non-invasive detection of homozygosity for PNPLA3 I148M through the application of deep learning models on MRI images. Our findings suggest that PNPLA3 I148M might affect the liver fat distribution and could be used to predict the presence of PNPLA3 variants in patients with fatty liver. The findings of this research have the potential to be integrated into standard clinical practice, particularly when combined with clinical and biochemical data from other modalities to increase accuracy, enabling easier identification of at-risk individuals and facilitating the development of tailored interventions for PNPLA3 I148M-associated liver disease.

Unsupervised Cardiac Video Translation Via Motion Feature Guided Diffusion Model

Swakshar Deb, Nian Wu, Frederick H. Epstein, Miaomiao Zhang

arxiv logopreprintJul 1 2025
This paper presents a novel motion feature guided diffusion model for unpaired video-to-video translation (MFD-V2V), designed to synthesize dynamic, high-contrast cine cardiac magnetic resonance (CMR) from lower-contrast, artifact-prone displacement encoding with stimulated echoes (DENSE) CMR sequences. To achieve this, we first introduce a Latent Temporal Multi-Attention (LTMA) registration network that effectively learns more accurate and consistent cardiac motions from cine CMR image videos. A multi-level motion feature guided diffusion model, equipped with a specialized Spatio-Temporal Motion Encoder (STME) to extract fine-grained motion conditioning, is then developed to improve synthesis quality and fidelity. We evaluate our method, MFD-V2V, on a comprehensive cardiac dataset, demonstrating superior performance over the state-of-the-art in both quantitative metrics and qualitative assessments. Furthermore, we show the benefits of our synthesized cine CMRs improving downstream clinical and analytical tasks, underscoring the broader impact of our approach. Our code is publicly available at https://github.com/SwaksharDeb/MFD-V2V.

Artificial Intelligence in Prostate Cancer Diagnosis on Magnetic Resonance Imaging: Time for a New PARADIGM.

Ng AB, Giganti F, Kasivisvanathan V

pubmed logopapersJul 1 2025
Artificial intelligence (AI) may provide a solution for improving access to expert, timely, and accurate magnetic resonance imaging (MRI) interpretation. The PARADIGM trial will provide level 1 evidence on the role of AI in the diagnosis of prostate cancer on MRI.

Challenges, optimization strategies, and future horizons of advanced deep learning approaches for brain lesion segmentation.

Zaman A, Yassin MM, Mehmud I, Cao A, Lu J, Hassan H, Kang Y

pubmed logopapersJul 1 2025
Brain lesion segmentation is challenging in medical image analysis, aiming to delineate lesion regions precisely. Deep learning (DL) techniques have recently demonstrated promising results across various computer vision tasks, including semantic segmentation, object detection, and image classification. This paper offers an overview of recent DL algorithms for brain tumor and stroke segmentation, drawing on literature from 2021 to 2024. It highlights the strengths, limitations, current research challenges, and unexplored areas in imaging-based brain lesion classification based on insights from over 250 recent review papers. Techniques addressing difficulties like class imbalance and multi-modalities are presented. Optimization methods for improving performance regarding computational and structural complexity and processing speed are discussed. These include lightweight neural networks, multilayer architectures, and computationally efficient, highly accurate network designs. The paper also reviews generic and latest frameworks of different brain lesion detection techniques and highlights publicly available benchmark datasets and their issues. Furthermore, open research areas, application prospects, and future directions for DL-based brain lesion classification are discussed. Future directions include integrating neural architecture search methods with domain knowledge, predicting patient survival levels, and learning to separate brain lesions using patient statistics. To ensure patient privacy, future research is anticipated to explore privacy-preserving learning frameworks. Overall, the presented suggestions serve as a guideline for researchers and system designers involved in brain lesion detection and stroke segmentation tasks.

Development and validation of an interpretable machine learning model for diagnosing pathologic complete response in breast cancer.

Zhou Q, Peng F, Pang Z, He R, Zhang H, Jiang X, Song J, Li J

pubmed logopapersJul 1 2025
Pathologic complete response (pCR) following neoadjuvant chemotherapy (NACT) is a critical prognostic marker for patients with breast cancer, potentially allowing surgery omission. However, noninvasive and accurate pCR diagnosis remains a significant challenge due to the limitations of current imaging techniques, particularly in cases where tumors completely disappear post-NACT. We developed a novel framework incorporating Dimensional Accumulation for Layered Images (DALI) and an Attention-Box annotation tool to address the unique challenge of analyzing imaging data where target lesions are absent. These methods transform three-dimensional magnetic resonance imaging into two-dimensional representations and ensure consistent target tracking across time-points. Preprocessing techniques, including tissue-region normalization and subtraction imaging, were used to enhance model performance. Imaging features were extracted using radiomics and pretrained deep-learning models, and machine-learning algorithms were integrated into a stacked ensemble model. The approach was developed using the I-SPY 2 dataset and validated with an independent Tangshan People's Hospital cohort. The stacked ensemble model achieved superior diagnostic performance, with an area under the receiver operating characteristic curve of 0.831 (95 % confidence interval, 0.769-0.887) on the test set, outperforming individual models. Tissue-region normalization and subtraction imaging significantly enhanced diagnostic accuracy. SHAP analysis identified variables that contributed to the model predictions, ensuring model interpretability. This innovative framework addresses challenges of noninvasive pCR diagnosis. Integrating advanced preprocessing techniques improves feature quality and model performance, supporting clinicians in identifying patients who can safely omit surgery. This innovation reduces unnecessary treatments and improves quality of life for patients with breast cancer.
Page 55 of 1241236 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.