Sort by:
Page 54 of 3523515 results

Recurrent inference machine for medical image registration.

Zhang Y, Zhao Y, Xue H, Kellman P, Klein S, Tao Q

pubmed logopapersAug 5 2025
Image registration is essential for medical image applications where alignment of voxels across multiple images is needed for qualitative or quantitative analysis. With recent advances in deep neural networks and parallel computing, deep learning-based medical image registration methods become competitive with their flexible modeling and fast inference capabilities. However, compared to traditional optimization-based registration methods, the speed advantage may come at the cost of registration performance at inference time. Besides, deep neural networks ideally demand large training datasets while optimization-based methods are training-free. To improve registration accuracy and data efficiency, we propose a novel image registration method, termed Recurrent Inference Image Registration (RIIR) network. RIIR is formulated as a meta-learning solver for the registration problem in an iterative manner. RIIR addresses the accuracy and data efficiency issues, by learning the update rule of optimization, with implicit regularization combined with explicit gradient input. We extensively evaluated RIIR on brain MRI, lung CT, and quantitative cardiac MRI datasets, in terms of both registration accuracy and training data efficiency. Our experiments showed that RIIR outperformed a range of deep learning-based methods, even with only 5% of the training data, demonstrating high data efficiency. Key findings from our ablation studies highlighted the important added value of the hidden states introduced in the recurrent inference framework for meta-learning. Our proposed RIIR offers a highly data-efficient framework for deep learning-based medical image registration.

Prediction of breast cancer HER2 status changes based on ultrasound radiomics attention network.

Liu J, Xue X, Yan Y, Song Q, Cheng Y, Wang L, Wang X, Xu D

pubmed logopapersAug 5 2025
Following Neoadjuvant Chemotherapy (NAC), there exists a probability of changes occurring in the Human Epidermal Growth Factor Receptor 2 (HER2) status. If these changes are not promptly addressed, it could hinder the timely adjustment of treatment plans, thereby affecting the optimal management of breast cancer. Consequently, the accurate prediction of HER2 status changes holds significant clinical value, underscoring the need for a model capable of precisely forecasting these alterations. In this paper, we elucidate the intricacies surrounding HER2 status changes, and propose a deep learning architecture combined with radiomics techniques, named as Ultrasound Radiomics Attention Network (URAN), to predict HER2 status changes. Firstly, radiomics technology is used to extract ultrasound image features to provide rich and comprehensive medical information. Secondly, HER2 Key Feature Selection (HKFS) network is constructed for retain crucial features relevant to HER2 status change. Thirdly, we design Max and Average Attention and Excitation (MAAE) network to adjust the model's focus on different key features. Finally, a fully connected neural network is utilized to predict HER2 status changes. The code to reproduce our experiments can be found at https://github.com/joanaapa/Foundation-Medical. Our research was carried out using genuine ultrasound images sourced from hospitals. On this dataset, URAN outperformed both state-of-the-art and traditional methods in predicting HER2 status changes, achieving an accuracy of 0.8679 and an AUC of 0.8328 (95% CI: 0.77-0.90). Comparative experiments on the public BUS_UCLM dataset further demonstrated URAN's superiority, attaining an accuracy of 0.9283 and an AUC of 0.9161 (95% CI: 0.91-0.92). Additionally, we undertook rigorously crafted ablation studies, which validated the logicality and effectiveness of the radiomics techniques, as well as the HKFS and MAAE modules integrated within the URAN model. The results pertaining to specific HER2 statuses indicate that URAN exhibits superior accuracy in predicting changes in HER2 status characterized by low expression and IHC scores of 2+ or below. Furthermore, we examined the radiomics attributes of ultrasound images and discovered that various wavelet transform features significantly impacted the changes in HER2 status. We have developed a URAN method for predicting HER2 status changes that combines radiomics techniques and deep learning. URAN model have better predictive performance compared to other competing algorithms, and can mine key radiomics features related to HER2 status changes.

Are Vision-xLSTM-embedded U-Nets better at segmenting medical images?

Dutta P, Bose S, Roy SK, Mitra S

pubmed logopapersAug 5 2025
The development of efficient segmentation strategies for medical images has evolved from its initial dependence on Convolutional Neural Networks (CNNs) to the current investigation of hybrid models that combine CNNs with Vision Transformers (ViTs). There is an increasing focus on developing architectures that are both high-performing and computationally efficient, capable of being deployed on remote systems with limited resources. Although transformers can capture global dependencies in the input space, they face challenges from the corresponding high computational and storage expenses involved. The objective of this research is to propose that Vision Extended Long Short-Term Memory (Vision-xLSTM) forms an appropriate backbone for medical image segmentation, offering excellent performance with reduced computational costs. This study investigates the integration of CNNs with Vision-xLSTM by introducing the novel U-VixLSTM. The Vision-xLSTM blocks capture the temporal and global relationships within the patches extracted from the CNN feature maps. The convolutional feature reconstruction path upsamples the output volume from the Vision-xLSTM blocks to produce the segmentation output. The U-VixLSTM exhibits superior performance compared to the state-of-the-art networks in the publicly available Synapse, ISIC and ACDC datasets. The findings suggest that U-VixLSTM is a promising alternative to ViTs for medical image segmentation, delivering effective performance without substantial computational burden. This makes it feasible for deployment in healthcare environments with limited resources for faster diagnosis. Code provided: https://github.com/duttapallabi2907/U-VixLSTM.

Multi-Center 3D CNN for Parkinson's disease diagnosis and prognosis using clinical and T1-weighted MRI data.

Basaia S, Sarasso E, Sciancalepore F, Balestrino R, Musicco S, Pisano S, Stankovic I, Tomic A, Micco R, Tessitore A, Salvi M, Meiburger KM, Kostic VS, Molinari F, Agosta F, Filippi M

pubmed logopapersAug 5 2025
Parkinson's disease (PD) presents challenges in early diagnosis and progression prediction. Recent advancements in machine learning, particularly convolutional-neural-networks (CNNs), show promise in enhancing diagnostic accuracy and prognostic capabilities using neuroimaging data. The aims of this study were: (i) develop a 3D-CNN based on MRI to distinguish controls and PD patients and (ii) employ CNN to predict the progression of PD. Three cohorts were selected: 86 mild, 62 moderate-to-severe PD patients, and 60 controls; 14 mild-PD patients and 14 controls from Parkinson's Progression Markers Initiative database, and 38 de novo mild-PD patients and 38 controls. All participants underwent MRI scans and clinical evaluation at baseline and over 2-years. PD subjects were classified in two clusters of different progression using k-means clustering based on baseline and follow-up UDPRS-III scores. A 3D-CNN was built and tested on PD patients and controls, with binary classifications: controls vs moderate-to-severe PD, controls vs mild-PD, and two clusters of PD progression. The effect of transfer learning was also tested. CNN effectively differentiated moderate-to-severe PD from controls (74% accuracy) using MRI data alone. Transfer learning significantly improved performance in distinguishing mild-PD from controls (64% accuracy). For predicting disease progression, the model achieved over 70% accuracy by combining MRI and clinical data. Brain regions most influential in the CNN's decisions were visualized. CNN, integrating multimodal data and transfer learning, provides encouraging results toward early-stage classification and progression monitoring in PD. Its explainability through activation maps offers potential for clinical application in early diagnosis and personalized monitoring.

Unsupervised learning based perfusion maps for temporally truncated CT perfusion imaging.

Tung CH, Li ZY, Huang HM

pubmed logopapersAug 5 2025

Computed tomography perfusion (CTP) imaging is a rapid diagnostic tool for acute stroke but is less robust when tissue time-attenuation curves are truncated. This study proposes an unsupervised learning method for generating perfusion maps from truncated CTP images. Real brain CTP images were artificially truncated to 15% and 30% of the original scan time. Perfusion maps of complete and truncated CTP images were calculated using the proposed method and compared with standard singular value decomposition (SVD), tensor total variation (TTV), nonlinear regression (NLR), and spatio-temporal perfusion physics-informed neural network (SPPINN).
Main results.
The NLR method yielded many perfusion values outside physiological ranges, indicating a lack of robustness. The proposed method did not improve the estimation of cerebral blood flow compared to both the SVD and TTV methods, but reduced the effect of truncation on the estimation of cerebral blood volume, with a relative difference of 15.4% in the infarcted region for 30% truncation (20.7% for SVD and 19.4% for TTV). The proposed method also showed better resistance to 30% truncation for mean transit time, with a relative difference of 16.6% in the infarcted region (25.9% for SVD and 26.2% for TTV). Compared to the SPPINN method, the proposed method had similar responses to truncation in gray and white matter, but was less sensitive to truncation in the infarcted region. These results demonstrate the feasibility of using unsupervised learning to generate perfusion maps from CTP images and improve robustness under truncation scenarios.&#xD.

MedCAL-Bench: A Comprehensive Benchmark on Cold-Start Active Learning with Foundation Models for Medical Image Analysis

Ning Zhu, Xiaochuan Ma, Shaoting Zhang, Guotai Wang

arxiv logopreprintAug 5 2025
Cold-Start Active Learning (CSAL) aims to select informative samples for annotation without prior knowledge, which is important for improving annotation efficiency and model performance under a limited annotation budget in medical image analysis. Most existing CSAL methods rely on Self-Supervised Learning (SSL) on the target dataset for feature extraction, which is inefficient and limited by insufficient feature representation. Recently, pre-trained Foundation Models (FMs) have shown powerful feature extraction ability with a potential for better CSAL. However, this paradigm has been rarely investigated, with a lack of benchmarks for comparison of FMs in CSAL tasks. To this end, we propose MedCAL-Bench, the first systematic FM-based CSAL benchmark for medical image analysis. We evaluate 14 FMs and 7 CSAL strategies across 7 datasets under different annotation budgets, covering classification and segmentation tasks from diverse medical modalities. It is also the first CSAL benchmark that evaluates both the feature extraction and sample selection stages. Our experimental results reveal that: 1) Most FMs are effective feature extractors for CSAL, with DINO family performing the best in segmentation; 2) The performance differences of these FMs are large in segmentation tasks, while small for classification; 3) Different sample selection strategies should be considered in CSAL on different datasets, with Active Learning by Processing Surprisal (ALPS) performing the best in segmentation while RepDiv leading for classification. The code is available at https://github.com/HiLab-git/MedCAL-Bench.

A Novel Multimodal Framework for Early Detection of Alzheimers Disease Using Deep Learning

Tatwadarshi P Nagarhalli, Sanket Patil, Vishal Pande, Uday Aswalekar, Prafulla Patil

arxiv logopreprintAug 5 2025
Alzheimers Disease (AD) is a progressive neurodegenerative disorder that poses significant challenges in its early diagnosis, often leading to delayed treatment and poorer outcomes for patients. Traditional diagnostic methods, typically reliant on single data modalities, fall short of capturing the multifaceted nature of the disease. In this paper, we propose a novel multimodal framework for the early detection of AD that integrates data from three primary sources: MRI imaging, cognitive assessments, and biomarkers. This framework employs Convolutional Neural Networks (CNN) for analyzing MRI images and Long Short-Term Memory (LSTM) networks for processing cognitive and biomarker data. The system enhances diagnostic accuracy and reliability by aggregating results from these distinct modalities using advanced techniques like weighted averaging, even in incomplete data. The multimodal approach not only improves the robustness of the detection process but also enables the identification of AD at its earliest stages, offering a significant advantage over conventional methods. The integration of biomarkers and cognitive tests is particularly crucial, as these can detect Alzheimer's long before the onset of clinical symptoms, thereby facilitating earlier intervention and potentially altering the course of the disease. This research demonstrates that the proposed framework has the potential to revolutionize the early detection of AD, paving the way for more timely and effective treatments

Sex differences in white matter amplitude of low-frequency fluctuation associated with cognitive performance across the Alzheimer's disease continuum.

Chen X, Zhou S, Wang W, Gao Z, Ye W, Zhu W, Lu Y, Ma J, Li X, Yu Y, Li X

pubmed logopapersAug 5 2025
BackgroundSex differences in Alzheimer's disease (AD) progression offer insights into pathogenesis and clinical management. White matter (WM) amplitude of low-frequency fluctuation (ALFF), reflecting neural activity, represents a potential disease biomarker.ObjectiveTo explore whether there are sex differences in regional WM ALFF among AD patients, amnestic mild cognitive impairment (aMCI) patients, and healthy controls (HCs), how it is related to cognitive performance, and whether it can be used for disease classification.MethodsResting-state functional magnetic resonance images and cognitive assessments were obtained from 85 AD (36 female), 52 aMCI (23 female), and 78 HCs (43 female). Two-way ANOVA examined group × sex interactions for regional WM ALFF and cognitive scores. WM ALFF-cognition correlations and support vector machine diagnostic accuracy were evaluated.ResultsSex × group interaction effects on WM ALFF were detected in the right superior longitudinal fasciculus (<i>F</i> = 20.08, <i>p</i><sub>FDR_corrected</sub> < 0.001), left superior longitudinal fasciculus (<i>F</i> = 5.45, <i>p</i><sub>GRF_corrected</sub> < 0.001) and right inferior longitudinal fasciculus (<i>F</i> = 6.00, <i>p</i><sub>GRF_corrected</sub> = 0.001). These WM ALFF values positively correlated with different cognitive performance between sexes. The support vector machine learning best differentiated aMCI from AD in the full cohort and males (accuracy = 75%), and HCs from aMCI in females (accuracy = 93%).ConclusionsSex differences in regional WM ALFF during AD progression are associated with cognitive performance and can be utilized for disease classification.

Utilizing 3D fast spin echo anatomical imaging to reduce the number of contrast preparations in <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> quantification of knee cartilage using learning-based methods.

Zhong J, Huang C, Yu Z, Xiao F, Blu T, Li S, Ong TM, Ho KK, Chan Q, Griffith JF, Chen W

pubmed logopapersAug 5 2025
To propose and evaluate an accelerated <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> quantification method that combines <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> -weighted fast spin echo (FSE) images and proton density (PD)-weighted anatomical FSE images, leveraging deep learning models for <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> mapping. The goal is to reduce scan time and facilitate integration into routine clinical workflows for osteoarthritis (OA) assessment. This retrospective study utilized MRI data from 40 participants (30 OA patients and 10 healthy volunteers). A volume of PD-weighted anatomical FSE images and a volume of <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> -weighted images acquired at a non-zero spin-lock time were used as input to train deep learning models, including a 2D U-Net and a multi-layer perceptron (MLP). <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> maps generated by these models were compared with ground truth maps derived from a traditional non-linear least squares (NLLS) fitting method using four <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> -weighted images. Evaluation metrics included mean absolute error (MAE), mean absolute percentage error (MAPE), regional error (RE), and regional percentage error (RPE). The best-performed deep learning models achieved RPEs below 5% across all evaluated scenarios. This performance was consistent even in reduced acquisition settings that included only one PD-weighted image and one <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> -weighted image, where NLLS methods cannot be applied. Furthermore, the results were comparable to those obtained with NLLS when longer acquisitions with four <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> -weighted images were used. The proposed approach enables efficient <math xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\rho } $$</annotation></semantics> </math> mapping using PD-weighted anatomical images, reducing scan time while maintaining clinical standards. This method has the potential to facilitate the integration of quantitative MRI techniques into routine clinical practice, benefiting OA diagnosis and monitoring.

GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images

Yifei Sun, Zhanghao Chen, Hao Zheng, Yuqing Lu, Lixin Duan, Fenglei Fan, Ahmed Elazab, Xiang Wan, Changmiao Wang, Ruiquan Ge

arxiv logopreprintAug 5 2025
Chest X-Ray (CXR) imaging for pulmonary diagnosis raises significant challenges, primarily because bone structures can obscure critical details necessary for accurate diagnosis. Recent advances in deep learning, particularly with diffusion models, offer significant promise for effectively minimizing the visibility of bone structures in CXR images, thereby improving clarity and diagnostic accuracy. Nevertheless, existing diffusion-based methods for bone suppression in CXR imaging struggle to balance the complete suppression of bones with preserving local texture details. Additionally, their high computational demand and extended processing time hinder their practical use in clinical settings. To address these limitations, we introduce a Global-Local Latent Consistency Model (GL-LCM) architecture. This model combines lung segmentation, dual-path sampling, and global-local fusion, enabling fast high-resolution bone suppression in CXR images. To tackle potential boundary artifacts and detail blurring in local-path sampling, we further propose Local-Enhanced Guidance, which addresses these issues without additional training. Comprehensive experiments on a self-collected dataset SZCH-X-Rays, and the public dataset JSRT, reveal that our GL-LCM delivers superior bone suppression and remarkable computational efficiency, significantly outperforming several competitive methods. Our code is available at https://github.com/diaoquesang/GL-LCM.
Page 54 of 3523515 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.