Sort by:
Page 54 of 2252247 results

Brain Tumor Detection through Thermal Imaging and MobileNET

Roham Maiti, Debasmita Bhoumik

arxiv logopreprintJun 30 2025
Brain plays a crucial role in regulating body functions and cognitive processes, with brain tumors posing significant risks to human health. Precise and prompt detection is a key factor in proper treatment and better patient outcomes. Traditional methods for detecting brain tumors, that include biopsies, MRI, and CT scans often face challenges due to their high costs and the need for specialized medical expertise. Recent developments in machine learning (ML) and deep learning (DL) has exhibited strong capabilities in automating the identification and categorization of brain tumors from medical images, especially MRI scans. However, these classical ML models have limitations, such as high computational demands, the need for large datasets, and long training times, which hinder their accessibility and efficiency. Our research uses MobileNET model for efficient detection of these tumors. The novelty of this project lies in building an accurate tumor detection model which use less computing re-sources and runs in less time followed by efficient decision making through the use of image processing technique for accurate results. The suggested method attained an average accuracy of 98.5%.

Contrastive Learning with Diffusion Features for Weakly Supervised Medical Image Segmentation

Dewen Zeng, Xinrong Hu, Yu-Jen Chen, Yawen Wu, Xiaowei Xu, Yiyu Shi

arxiv logopreprintJun 30 2025
Weakly supervised semantic segmentation (WSSS) methods using class labels often rely on class activation maps (CAMs) to localize objects. However, traditional CAM-based methods struggle with partial activations and imprecise object boundaries due to optimization discrepancies between classification and segmentation. Recently, the conditional diffusion model (CDM) has been used as an alternative for generating segmentation masks in WSSS, leveraging its strong image generation capabilities tailored to specific class distributions. By modifying or perturbing the condition during diffusion sampling, the related objects can be highlighted in the generated images. Yet, the saliency maps generated by CDMs are prone to noise from background alterations during reverse diffusion. To alleviate the problem, we introduce Contrastive Learning with Diffusion Features (CLDF), a novel method that uses contrastive learning to train a pixel decoder to map the diffusion features from a frozen CDM to a low-dimensional embedding space for segmentation. Specifically, we integrate gradient maps generated from CDM external classifier with CAMs to identify foreground and background pixels with fewer false positives/negatives for contrastive learning, enabling robust pixel embedding learning. Experimental results on four segmentation tasks from two public medical datasets demonstrate that our method significantly outperforms existing baselines.

Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation

Fangyijie Wang, Kevin Whelan, Félix Balado, Guénolé Silvestre, Kathleen M. Curran

arxiv logopreprintJun 30 2025
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.

Statistical Toolkit for Analysis of Radiotherapy DICOM Data.

Kinz M, Molodowitch C, Killoran J, Hesser JW, Zygmanski P

pubmed logopapersJun 30 2025

Radiotherapy (RT) has become increasingly sophisticated, necessitating advanced tools for analyzing extensive treatment data in hospital databases. Such analyses can enhance future treatments, particularly through Knowledge-Based Planning, and aid in developing new treatment modalities like convergent kV RT.
Purpose: The objective is to develop automated software tools for large-scale retrospective analysis of over 10,000 MeV x-ray radiotherapy plans. This aims to identify trends and references in plans delivered at our institution across all treatment sites, focusing on: (A) Planning-Target-Volume, Clinical-Target-Volume, Gross-Tumor-Volume, and Organ-At-Risk (PTV/CTV/GTV/OAR) topology, morphology, and dosimetry, and (B) RT plan efficiency and complexity.
Methods:
The software tools are coded in Python. Topological metrics are evaluated using principal component analysis, including center of mass, volume, size, and depth. Morphology is quantified using Hounsfield Units, while dose distribution is characterized by conformity and homogeneity indexes. The total dose within the target versus the body is defined as the Dose Balance Index. 
Results:
The primary outcome of this study is the toolkit and an analysis of our database. For example, the mean minimum and maximum PTV depths are about 2.5±2.3 cm and 9±3 cm, respectively.
Conclusions:
This study provides a statistical basis for RT plans and the necessary tools to generate them. It aids in selecting plans for knowledge-based models and deep-learning networks. The site-specific volume and depth results help identify the limitations and opportunities of current and future treatment modalities, in our case convergent kV RT. The compiled statistics and tools are versatile for training, quality assurance, comparing plans from different periods or institutions, and establishing guidelines. The toolkit is publicly available at https://github.com/m-kinz/STAR.

U-Net-based architecture with attention mechanisms and Bayesian Optimization for brain tumor segmentation using MR images.

Ramalakshmi K, Krishna Kumari L

pubmed logopapersJun 30 2025
As technological innovation in computers has advanced, radiologists may now diagnose brain tumors (BT) with the use of artificial intelligence (AI). In the medical field, early disease identification enables further therapies, where the use of AI systems is essential for time and money savings. The difficulties presented by various forms of Magnetic Resonance (MR) imaging for BT detection are frequently not addressed by conventional techniques. To get around frequent problems with traditional tumor detection approaches, deep learning techniques have been expanded. Thus, for BT segmentation utilizing MR images, a U-Net-based architecture combined with Attention Mechanisms has been developed in this work. Moreover, by fine-tuning essential variables, Hyperparameter Optimization (HPO) is used using the Bayesian Optimization Algorithm to strengthen the segmentation model's performance. Tumor regions are pinpointed for segmentation using Region-Adaptive Thresholding technique, and the segmentation results are validated against ground truth annotated images to assess the performance of the suggested model. Experiments are conducted using the LGG, Healthcare, and BraTS 2021 MRI brain tumor datasets. Lastly, the importance of the suggested model has been demonstrated through comparing several metrics, such as IoU, accuracy, and DICE Score, with current state-of-the-art methods. The U-Net-based method gained a higher DICE score of 0.89687 in the segmentation of MRI-BT.

Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles.

Shen X, Huang H, Nichyporuk B, Arbel T

pubmed logopapersJun 30 2025
Once deployed, medical image analysis methods are often faced with unexpected image corruptions and noise perturbations. These unknown covariate shifts present significant challenges to deep learning based methods trained on "clean" images. This often results in unreliable predictions and poorly calibrated confidence, hence hindering clinical applicability. While recent methods have been developed to address specific issues such as confidence calibration or adversarial robustness, no single framework effectively tackles all these challenges simultaneously. To bridge this gap, we propose LaDiNE, a novel ensemble learning method combining the robustness of Vision Transformers with diffusion-based generative models for improved reliability in medical image classification. Specifically, transformer encoder blocks are used as hierarchical feature extractors that learn invariant features from images for each ensemble member, resulting in features that are robust to input perturbations. In addition, diffusion models are used as flexible density estimators to estimate member densities conditioned on the invariant features, leading to improved modeling of complex data distributions while retaining properly calibrated confidence. Extensive experiments on tuberculosis chest X-rays and melanoma skin cancer datasets demonstrate that LaDiNE achieves superior performance compared to a wide range of state-of-the-art methods by simultaneously improving prediction accuracy and confidence calibration under unseen noise, adversarial perturbations, and resolution degradation.

Exposing and Mitigating Calibration Biases and Demographic Unfairness in MLLM Few-Shot In-Context Learning for Medical Image Classification

Xing Shen, Justin Szeto, Mingyang Li, Hengguan Huang, Tal Arbel

arxiv logopreprintJun 29 2025
Multimodal large language models (MLLMs) have enormous potential to perform few-shot in-context learning in the context of medical image analysis. However, safe deployment of these models into real-world clinical practice requires an in-depth analysis of the accuracies of their predictions, and their associated calibration errors, particularly across different demographic subgroups. In this work, we present the first investigation into the calibration biases and demographic unfairness of MLLMs' predictions and confidence scores in few-shot in-context learning for medical image classification. We introduce CALIN, an inference-time calibration method designed to mitigate the associated biases. Specifically, CALIN estimates the amount of calibration needed, represented by calibration matrices, using a bi-level procedure: progressing from the population level to the subgroup level prior to inference. It then applies this estimation to calibrate the predicted confidence scores during inference. Experimental results on three medical imaging datasets: PAPILA for fundus image classification, HAM10000 for skin cancer classification, and MIMIC-CXR for chest X-ray classification demonstrate CALIN's effectiveness at ensuring fair confidence calibration in its prediction, while improving its overall prediction accuracies and exhibiting minimum fairness-utility trade-off.

Perivascular Space Burden in Children With Autism Spectrum Disorder Correlates With Neurodevelopmental Severity.

Frigerio G, Rizzato G, Peruzzo D, Ciceri T, Mani E, Lanteri F, Mariani V, Molteni M, Agarwal N

pubmed logopapersJun 29 2025
Cerebral perivascular spaces (PVS) are involved in cerebrospinal fluid (CSF) circulation and clearance of metabolic waste in adult humans. A high number of PVS has been reported in autism spectrum disorder (ASD) but its relationship with CSF and disease severity is unclear. To quantify PVS in children with ASD through MRI. Retrospective. Sixty six children with ASD (mean age: 4.7 ± 1.5 years; males/females: 59/7). 3T, 3D T1-weighted GRE and 3D T2-weighted turbo spin echo sequences. PVS were segmented using a weakly supervised PVS algorithm. PVS count, white matter-perivascular spaces (WM-PVS<sub>tot</sub>) and normalized volume (WM-PVS<sub>voln</sub>) were analyzed in the entire white matter. Six regions: frontal, parietal, limbic, occipital, temporal, and deep WM (WM-PVS<sub>sr</sub>). WM, GM, CSF, and extra-axial CSF (eaCSF) volumes were also calculated. Autism Diagnostic Observation Schedule, Wechsler Intelligence Scale, and Griffiths Mental Developmental scales were used to assess clinical severity and developmental quotient (DQ). Kendall correlation analysis (continuous variables) and Friedman (categorical variables) tests were used to compare medians of PVS variables across different WM regions. Post hoc pairwise comparisons with Wilcoxon tests were used to evaluate distributions of PVS in WM regions. Generalized linear models were employed to assess DQ, clinical severity, age, and eaCSF volume in relation to PVS variables. A p-value < 0.05 indicated statistical significance. Severe DQ (β = 0.0089), mild form of autism (β = -0.0174), and larger eaCSF (β = 0.0082) volume was significantly associated with greater WM-PVS<sub>tot</sub> count. WM-PVS<sub>voln</sub> was predominantly affected by normalized eaCSF volume (eaCSF<sub>voln</sub>) (β = 0.0242; adjusted for WM volumes). The percentage of WM-PVS<sub>sr</sub> was higher in the frontal areas (32%) and was lowest in the temporal regions (11%). PVS count and volume in ASD are associated with eaCSF<sub>voln</sub>. PVS count is related to clinical severity and DQ. PVS count was higher in frontal regions and lower in temporal regions. 4. Stage 3.

Cognition-Eye-Brain Connection in Alzheimer's Disease Spectrum Revealed by Multimodal Imaging.

Shi Y, Shen T, Yan S, Liang J, Wei T, Huang Y, Gao R, Zheng N, Ci R, Zhang M, Tang X, Qin Y, Zhu W

pubmed logopapersJun 29 2025
The connection between cognition, eye, and brain remains inconclusive in Alzheimer's disease (AD) spectrum disorders. To explore the relationship between cognitive function, retinal biometrics, and brain alterations in the AD spectrum. Prospective. Healthy control (HC) (n = 16), subjective cognitive decline (SCD) (n = 35), mild cognitive impairment (MCI) (n = 18), and AD group (n = 7). 3-T, 3D T1-weighted Brain Volume (BRAVO) and resting-state functional MRI (fMRI). In all subgroups, cortical thickness was measured from BRAVO and segmented using the Desikan-Killiany-Tourville (DKT) atlas. The fractional amplitude of low-frequency fluctuations (FALFF) and regional homogeneity (ReHo) were measured in fMRI using voxel-based analysis. The eye was imaged by optical coherence tomography angiography (OCTA), with the deep learning model FARGO segmenting the foveal avascular zone (FAZ) and retinal vessels. FAZ area and perimeter, retinal blood vessels curvature (RBVC), thicknesses of the retinal nerve fiber layer (RNFL) and ganglion cell layer-inner plexiform layer (GCL-IPL) were calculated. Cognition-eye-brain associations were compared across the HC group and each AD spectrum stage using multivariable linear regression. Multivariable linear regression analysis. Statistical significance was set at p < 0.05 with FWE correction for fMRI and p < 1/62 (Bonferroni-corrected) for structural analyses. Reductions of FALFF in temporal regions, especially the left superior temporal gyrus (STG) in MCI patients, were linked to decreased RNFL thickness and increased FAZ area significantly. In AD patients, reduced ReHo values in occipital regions, especially the right middle occipital gyrus (MOG), were significantly associated with an enlarged FAZ area. The SCD group showed widespread cortical thickening significantly associated with all aforementioned retinal biometrics, with notable thickening in the right fusiform gyrus (FG) and right parahippocampal gyrus (PHG) correlating with reduced GCL-IPL thickness. Brain function and structure may be associated with cognition and retinal biometrics across the AD spectrum. Specifically, cognition-eye-brain connections may be present in SCD. 2. 3.

Exposing and Mitigating Calibration Biases and Demographic Unfairness in MLLM Few-Shot In-Context Learning for Medical Image Classification

Xing Shen, Justin Szeto, Mingyang Li, Hengguan Huang, Tal Arbel

arxiv logopreprintJun 29 2025
Multimodal large language models (MLLMs) have enormous potential to perform few-shot in-context learning in the context of medical image analysis. However, safe deployment of these models into real-world clinical practice requires an in-depth analysis of the accuracies of their predictions, and their associated calibration errors, particularly across different demographic subgroups. In this work, we present the first investigation into the calibration biases and demographic unfairness of MLLMs' predictions and confidence scores in few-shot in-context learning for medical image classification. We introduce CALIN, an inference-time calibration method designed to mitigate the associated biases. Specifically, CALIN estimates the amount of calibration needed, represented by calibration matrices, using a bi-level procedure: progressing from the population level to the subgroup level prior to inference. It then applies this estimation to calibrate the predicted confidence scores during inference. Experimental results on three medical imaging datasets: PAPILA for fundus image classification, HAM10000 for skin cancer classification, and MIMIC-CXR for chest X-ray classification demonstrate CALIN's effectiveness at ensuring fair confidence calibration in its prediction, while improving its overall prediction accuracies and exhibiting minimum fairness-utility trade-off.
Page 54 of 2252247 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.