Sort by:
Page 52 of 1421416 results

BEA-CACE: branch-endpoint-aware double-DQN for coronary artery centerline extraction in CT angiography images.

Zhang Y, Luo G, Wang W, Cao S, Dong S, Yu D, Wang X, Wang K

pubmed logopapersAug 1 2025
In order to automate the centerline extraction of the coronary tree, three challenges must be addressed: tracking branches automatically, passing through plaques successfully, and detecting endpoints accurately. This study aims to develop a method to solve the three challenges. We propose a branch-endpoint-aware coronary centerline extraction framework. The framework consists of a deep reinforcement learning-based tracker and a 3D dilated CNN-based detector. The tracker is designed to predict the actions of an agent with the objective of tracking the centerline. The detector identifies bifurcation points and endpoints, assisting the tracker in tracking branches and terminating the tracking process automatically. The detector can also estimate the radius values of the coronary artery. The method achieves the state-of-the-art performance in both the centerline extraction and radius estimate. Furthermore, the method necessitates minimal user interaction to extract a coronary tree, a feature that surpasses other interactive methods. The method can track branches automatically, pass through plaques successfully and detect endpoints accurately. Compared with other interactive methods that require multiple seeds, our method only needs one seed to extract the entire coronary tree.

Coronary CT angiography evaluation with artificial intelligence for individualized medical treatment of atherosclerosis: a Consensus Statement from the QCI Study Group.

Schulze K, Stantien AM, Williams MC, Vassiliou VS, Giannopoulos AA, Nieman K, Maurovich-Horvat P, Tarkin JM, Vliegenthart R, Weir-McCall J, Mohamed M, Föllmer B, Biavati F, Stahl AC, Knape J, Balogh H, Galea N, Išgum I, Arbab-Zadeh A, Alkadhi H, Manka R, Wood DA, Nicol ED, Nurmohamed NS, Martens FMAC, Dey D, Newby DE, Dewey M

pubmed logopapersAug 1 2025
Coronary CT angiography is widely implemented, with an estimated 2.2 million procedures in patients with stable chest pain every year in Europe alone. In parallel, artificial intelligence and machine learning are poised to transform coronary atherosclerotic plaque evaluation by improving reliability and speed. However, little is known about how to use coronary atherosclerosis imaging biomarkers to individualize recommendations for medical treatment. This Consensus Statement from the Quantitative Cardiovascular Imaging (QCI) Study Group outlines key recommendations derived from a three-step Delphi process that took place after the third international QCI Study Group meeting in September 2024. Experts from various fields of cardiovascular imaging agreed on the use of age-adjusted and gender-adjusted percentile curves, based on coronary plaque data from the DISCHARGE and SCOT-HEART trials. Two key issues were addressed: the need to harness the reliability and precision of artificial intelligence and machine learning tools and to tailor treatment on the basis of individualized plaque analysis. The QCI Study Group recommends that the presence of any atherosclerotic plaque should lead to a recommendation of pharmacological treatment, whereas the 70th percentile of total plaque volume warrants high-intensity treatment. The aim of these recommendations is to lay the groundwork for future trials and to unlock the potential of coronary CT angiography to improve patient outcomes globally.

Structured Spectral Graph Learning for Anomaly Classification in 3D Chest CT Scans

Theo Di Piazza, Carole Lazarus, Olivier Nempont, Loic Boussel

arxiv logopreprintAug 1 2025
With the increasing number of CT scan examinations, there is a need for automated methods such as organ segmentation, anomaly detection and report generation to assist radiologists in managing their increasing workload. Multi-label classification of 3D CT scans remains a critical yet challenging task due to the complex spatial relationships within volumetric data and the variety of observed anomalies. Existing approaches based on 3D convolutional networks have limited abilities to model long-range dependencies while Vision Transformers suffer from high computational costs and often require extensive pre-training on large-scale datasets from the same domain to achieve competitive performance. In this work, we propose an alternative by introducing a new graph-based approach that models CT scans as structured graphs, leveraging axial slice triplets nodes processed through spectral domain convolution to enhance multi-label anomaly classification performance. Our method exhibits strong cross-dataset generalization, and competitive performance while achieving robustness to z-axis translation. An ablation study evaluates the contribution of each proposed component.

Anatomical Considerations for Achieving Optimized Outcomes in Individualized Cochlear Implantation.

Timm ME, Avallone E, Timm M, Salcher RB, Rudnik N, Lenarz T, Schurzig D

pubmed logopapersAug 1 2025
Machine learning models can assist with the selection of electrode arrays required for optimal insertion angles. Cochlea implantation is a successful therapy in patients with severe to profound hearing loss. The effectiveness of a cochlea implant depends on precise insertion and positioning of electrode array within the cochlea, which is known for its variability in shape and size. Preoperative imaging like CT or MRI plays a significant role in evaluating cochlear anatomy and planning the surgical approach to optimize outcomes. In this study, preoperative and postoperative CT and CBCT data of 558 cochlea-implant patients were analyzed in terms of the influence of anatomical factors and insertion depth onto the resulting insertion angle. Machine learning models can predict insertion depths needed for optimal insertion angles, with performance improving by including cochlear dimensions in the models. A simple linear regression using just the insertion depth explained 88% of variability, whereas adding cochlear length or diameter and width further improved predictions up to 94%.

Utility of an artificial intelligence-based lung CT airway model in the quantitative evaluation of large and small airway lesions in patients with chronic obstructive pulmonary disease.

Liu Z, Li J, Li B, Yi G, Pang S, Zhang R, Li P, Yin Z, Zhang J, Lv B, Yan J, Ma J

pubmed logopapersAug 1 2025
Accurate quantification of the extent of bronchial damage across various airway levels in chronic obstructive pulmonary disease (COPD) remains a challenge. In this study, artificial intelligence (AI) was employed to develop an airway segmentation model to investigate the morphological changes of the central and peripheral airways in COPD patients and the effects of these airway changes on pulmonary function classification and acute COPD exacerbations. Clinical data from a total of 340 patients with COPD and 73 healthy volunteers were collected and compiled. An AI-driven airway segmentation model was constructed using Convolutional Neural Regressor (CNR) and Airway Transfer Network (ATN) algorithms. The efficacy of the model was evaluated through support vector machine (SVM) and random forest regression approaches. The area under the receiver operating characteristic (ROC) curve (AUC) of the SVM in evaluating the COPD airway segmentation model was 0.96, with a sensitivity of 97% and a specificity of 92%, however, the AUC value of the SVM was 0.81 when it was replaced the healthy group by non-COPD outpatients. Compared with the healthy group, the grade and the total number of airway segmentation were decreased and the diameters of the right main bronchus and bilateral lobar bronchi of patients with COPD were smaller and the airway walls were thinner (all P < 0.01). However, the diameters of the subsegmental and small airway bronchi were increased, and airway walls were thickened, and the arc lengths were shorter ( all P < 0.01), especially in patients with severe COPD (all P < 0.05). Correlation and regression analysis showed that FEV1%pre was positively correlated with the diameters and airway wall thickness of the main and lobar airway, and the arc lengths of small airway bronchi (all P < 0.05). Airway wall thickness of the subsegment and small airway were found to have the greatest impact on the frequency of COPD exacerbations. Artificial intelligence lung CT airway segmentation model is a non-invasive quantitative tool for measuring chronic obstructive pulmonary disease. The main changes in COPD patients are that the central airway diameter becomes narrower and the thickness becomes thinner. The arc length of the peripheral airway becomes shorter, and the diameter and airway wall thickness become larger, which is more obvious in severe patients. Pulmonary function classification and small and medium airway dysfunction are also affected by the diameter, thickness and arc length of large and small airways. Small airway remodeling is more significant in acute exacerbations of COPD.

Lumbar and pelvic CT image segmentation based on cross-scale feature fusion and linear self-attention mechanism.

Li C, Chen L, Liu Q, Teng J

pubmed logopapersAug 1 2025
The lumbar spine and pelvis are critical stress-bearing structures of the human body, and their rapid and accurate segmentation plays a vital role in clinical diagnosis and intervention. However, conventional CT imaging poses significant challenges due to the low contrast of sacral and bilateral hip tissues and the complex and highly similar intervertebral space structures within the lumbar spine. To address these challenges, we propose a general-purpose segmentation network that integrates a cross-scale feature fusion strategy with a linear self-attention mechanism. The proposed network effectively extracts multi-scale features and fuses them along the channel dimension, enabling both structural and boundary information of lumbar and pelvic regions to be captured within the encoder-decoder architecture.Furthermore, we introduce a linear mapping strategy to approximate the traditional attention matrix with a low-rank representation, allowing the linear attention mechanism to significantly reduce computational complexity while maintaining segmentation accuracy for vertebrae and pelvic bones. Comparative and ablation experiments conducted on the CTSpine1K and CTPelvic1K datasets demonstrate that our method achieves improvements of 1.5% in Dice Similarity Coefficient (DSC) and 2.6% in Hausdorff Distance (HD) over state-of-the-art models, validating the effectiveness of our approach in enhancing boundary segmentation quality and segmentation accuracy in homogeneous anatomical regions.

Deep learning model for automated segmentation of sphenoid sinus and middle skull base structures in CBCT volumes using nnU-Net v2.

Gülşen İT, Kuran A, Evli C, Baydar O, Dinç Başar K, Bilgir E, Çelik Ö, Bayrakdar İŞ, Orhan K, Acu B

pubmed logopapersAug 1 2025
The purpose of this study is the development of a deep learning model based on nnU-Net v2 for the automated segmentation of sphenoid sinus and middle skull base anatomic structures in cone-beam computed tomography (CBCT) volumes, followed by an evaluation of the model's performance. In this retrospective study, the sphenoid sinus and surrounding anatomical structures in 99 CBCT scans were annotated using web-based labeling software. Model training was conducted using the nnU-Net v2 deep learning model with a learning rate of 0.01 for 1000 epochs. The performance of the model in automatically segmenting these anatomical structures in CBCT scans was evaluated using a series of metrics, including accuracy, precision, recall, dice coefficient (DC), 95% Hausdorff distance (95% HD), intersection on union (IoU), and AUC. The developed deep learning model demonstrated a high level of success in segmenting sphenoid sinus, foramen rotundum, and Vidian canal. Upon evaluation of the DC values, it was observed that the model demonstrated the highest degree of ability to segment the sphenoid sinus, with a DC value of 0.96. The nnU-Net v2-based deep learning model achieved high segmentation performance for the sphenoid sinus, foramen rotundum, and Vidian canal within the middle skull base, with the highest DC observed for the sphenoid sinus (DC: 0.96). However, the model demonstrated limited performance in segmenting other foramina of the middle skull base, indicating the need for further optimization for these structures.

Segmentation of coronary calcifications with a domain knowledge-based lightweight 3D convolutional neural network.

Santos R, Castro R, Baeza R, Nunes F, Filipe VM, Renna F, Paredes H, Fontes-Carvalho R, Pedrosa J

pubmed logopapersAug 1 2025
Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method's performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential.

Multimodal multiphasic preoperative image-based deep-learning predicts HCC outcomes after curative surgery.

Hui RW, Chiu KW, Lee IC, Wang C, Cheng HM, Lu J, Mao X, Yu S, Lam LK, Mak LY, Cheung TT, Chia NH, Cheung CC, Kan WK, Wong TC, Chan AC, Huang YH, Yuen MF, Yu PL, Seto WK

pubmed logopapersAug 1 2025
HCC recurrence frequently occurs after curative surgery. Histological microvascular invasion (MVI) predicts recurrence but cannot provide preoperative prognostication, whereas clinical prediction scores have variable performances. Recurr-NET, a multimodal multiphasic residual-network random survival forest deep-learning model incorporating preoperative CT and clinical parameters, was developed to predict HCC recurrence. Preoperative triphasic CT scans were retrieved from patients with resected histology-confirmed HCC from 4 centers in Hong Kong (internal cohort). The internal cohort was randomly divided in an 8:2 ratio into training and internal validation. External testing was performed in an independent cohort from Taiwan.Among 1231 patients (age 62.4y, 83.1% male, 86.8% viral hepatitis, and median follow-up 65.1mo), cumulative HCC recurrence rates at years 2 and 5 were 41.8% and 56.4%, respectively. Recurr-NET achieved excellent accuracy in predicting recurrence from years 1 to 5 (internal cohort AUROC 0.770-0.857; external AUROC 0.758-0.798), significantly outperforming MVI (internal AUROC 0.518-0.590; external AUROC 0.557-0.615) and multiple clinical risk scores (ERASL-PRE, ERASL-POST, DFT, and Shim scores) (internal AUROC 0.523-0.587, external AUROC: 0.524-0.620), respectively (all p < 0.001). Recurr-NET was superior to MVI in stratifying recurrence risks at year 2 (internal: 72.5% vs. 50.0% in MVI; external: 65.3% vs. 46.6% in MVI) and year 5 (internal: 86.4% vs. 62.5% in MVI; external: 81.4% vs. 63.8% in MVI) (all p < 0.001). Recurr-NET was also superior to MVI in stratifying liver-related and all-cause mortality (all p < 0.001). The performance of Recurr-NET remained robust in subgroup analyses. Recurr-NET accurately predicted HCC recurrence, outperforming MVI and clinical prediction scores, highlighting its potential in preoperative prognostication.

Establishing a Deep Learning Model That Integrates Pretreatment and Midtreatment Computed Tomography to Predict Treatment Response in Non-Small Cell Lung Cancer.

Chen X, Meng F, Zhang P, Wang L, Yao S, An C, Li H, Zhang D, Li H, Li J, Wang L, Liu Y

pubmed logopapersAug 1 2025
Patients with identical stages or similar tumor volumes can vary significantly in their responses to radiation therapy (RT) due to individual characteristics, making personalized RT for non-small cell lung cancer (NSCLC) challenging. This study aimed to develop a deep learning model by integrating pretreatment and midtreatment computed tomography (CT) to predict the treatment response in NSCLC patients. We retrospectively collected data from 168 NSCLC patients across 3 hospitals. Data from Shanghai General Hospital (SGH, 35 patients) and Shanxi Cancer Hospital (SCH, 93 patients) were used for model training and internal validation, while data from Linfen Central Hospital (LCH, 40 patients) were used for external validation. Deep learning, radiomics, and clinical features were extracted to establish a varying time interval long short-term memory network for response prediction. Furthermore, we derived a model-deduced personalize dose escalation (DE) for patients predicted to have suboptimal gross tumor volume regression. The area under the receiver operating characteristic curve (AUC) and predicted absolute error were used to evaluate the predictive Response Evaluation Criteria in Solid Tumors classification and the proportion of gross tumor volume residual. DE was calculated as the biological equivalent dose using an /α/β ratio of 10 Gy. The model using only pretreatment CT achieved the highest AUC of 0.762 and 0.687 in internal and external validation respectively, whereas the model integrating both pretreatment and midtreatment CT achieved AUC of 0.869 and 0.798, with predicted absolute error of 0.137 and 0.185, respectively. We performed personalized DE for 29 patients. Their original biological equivalent dose was approximately 72 Gy, within the range of 71.6 Gy to 75 Gy. DE ranged from 77.7 to 120 Gy for 29 patients, with 17 patients exceeding 100 Gy and 8 patients reaching the model's preset upper limit of 120 Gy. Combining pretreatment and midtreatment CT enhances prediction performance for RT response and offers a promising approach for personalized DE in NSCLC.
Page 52 of 1421416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.