Deep learning for tooth detection and segmentation in panoramic radiographs: a systematic review and meta-analysis.
Bonfanti-Gris M, Herrera A, Salido Rodríguez-Manzaneque MP, Martínez-Rus F, Pradíes G
•papers•Jul 30 2025This systematic review and meta-analysis aimed to summarize and evaluate the available information regarding the performance of deep learning methods for tooth detection and segmentation in orthopantomographies. Electronic databases (Medline, Embase and Cochrane) were searched up to September 2023 for relevant observational studies and both, randomized and controlled clinical trials. Two reviewers independently conducted the study selection, data extraction, and quality assessments. GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) assessment was adopted for collective grading of the overall body of evidence. From the 2,207 records identified, 20 studies were included in the analysis. Meta-analysis was conducted for the comparison of mesiodens detection and segmentation (n = 6) using sensitivity and specificity as the two main diagnostic parameters. A graphical summary of the analysis was also plotted and a Hierarchical Summary Receiver Operating Characteristic curve, prediction region, summary point, and confidence region were illustrated. The included studies quantitative analysis showed pooled sensitivity, specificity, positive LR, negative LR, and diagnostic odds ratio of 0.92 (95% confidence interval [CI], 0.84-0.96), 0.94 (95% CI, 0.89-0.97), 15.7 (95% CI, 7.6-32.2), 0.08 (95% CI, 0.04-0.18), and 186 (95% CI, 44-793), respectively. A graphical summary of the meta-analysis was plotted based on sensitivity and specificity. Hierarchical Summary Receiver Operating Characteristic curves showed a positive correlation between logit-transformed sensitivity and specificity (r = 0.886). Based on the results of the meta-analysis and GRADE assessment, a moderate recommendation is advised to dental operators when relying on AI-based tools for tooth detection and segmentation in panoramic radiographs.