Sort by:
Page 5 of 36358 results

Artificial Intelligence for the Detection of Fetal Ultrasound Findings Concerning for Major Congenital Heart Defects.

Zelop CM, Lam-Rachlin J, Arunamata A, Punn R, Behera SK, Lachaud M, David N, DeVore GR, Rebarber A, Fox NS, Gayanilo M, Garmel S, Boukobza P, Uzan P, Joly H, Girardot R, Cohen L, Stos B, De Boisredon M, Askinazi E, Thorey V, Gardella C, Levy M, Geiger M

pubmed logopapersAug 7 2025
To evaluate the performance of an artificial intelligence (AI)-based software to identify second-trimester fetal ultrasound examinations suspicious for congenital heart defects. The software analyzes all grayscale two-dimensional ultrasound cine clips of an examination to evaluate eight morphologic findings associated with severe congenital heart defects. A data set of 877 examinations was retrospectively collected from 11 centers. The presence of suspicious findings was determined by a panel of expert pediatric cardiologists, who determined that 311 examinations had at least one of the eight suspicious findings. The AI software processed each examination, labeling each finding as present, absent, or inconclusive. Of the 280 examinations with known severe congenital heart defects, 278 (sensitivity 0.993, 95% CI, 0.974-0.998) had at least one of the eight suspicious findings present as determined by the fetal cardiologists, highlighting the relevance of these eight findings. We then evaluated the performance of the AI software, which identified at least one finding as present in 271 examinations, that all eight findings were absent in five examinations, and was inconclusive in four of the 280 examinations with severe congenital heart defects, yielding a sensitivity of 0.968 (95% CI, 0.940-0.983) for severe congenital heart defects. When comparing the AI to the determination of findings by fetal cardiologists, the detection of any finding by the AI had a sensitivity of 0.987 (95% CI, 0.967-0.995) and a specificity of 0.977 (95% CI, 0.961-0.986) after exclusion of inconclusive examinations. The AI rendered a decision for any finding (either present or absent) in 98.7% of examinations. The AI-based software demonstrated high accuracy in identification of suspicious findings associated with severe congenital heart defects, yielding a high sensitivity for detecting severe congenital heart defects. These results show that AI has potential to improve antenatal congenital heart defect detection.

Automated detection of wrist ganglia in MRI using convolutional neural networks.

Hämäläinen M, Sormaala M, Kaseva T, Salli E, Savolainen S, Kangasniemi M

pubmed logopapersAug 7 2025
To investigate feasibility of a method which combines segmenting convolutional neural networks (CNN) for the automated detection of ganglion cysts in 2D MRI of the wrist. The study serves as proof-of-concept, demonstrating a method to decrease false positives and offering an efficient solution for ganglia detection. We retrospectively analyzed 58 MRI studies with wrist ganglia, each including 2D axial, sagittal, and coronal series. Manual segmentations were performed by a radiologist and used to train CNNs for automatic segmentation of each orthogonal series. Predictions were fused into a single 3D volume using a proposed prediction fusion method. Performance was evaluated over all studies using six-fold cross-validation, comparing method variations with metrics including true positive rate, number of false positives, and F-score metrics. The proposed method reached mean TPR of 0.57, mean FP of 0.4 and mean F-score of 0.53. Fusion of series predictions decreased the number of false positives significantly but also decreased TPR values. CNNs can detect ganglion cysts in wrist MRI. The number of false positives can be decreased by a method of prediction fusion from multiple CNNs.

Automated detection of zygomatic fractures on spiral computed tomography using a deep learning model.

Yari A, Fasih P, Kamali Hakim L, Asadi A

pubmed logopapersAug 6 2025
The aim of this study was to evaluate the performance of the YOLOv8 deep learning model for detecting zygomatic fractures. Computed tomography scans with zygomatic fractures were collected, with all slices annotated to identify fracture lines across seven categories: zygomaticomaxillary suture, zygomatic arch, zygomaticofrontal suture, sphenozygomatic suture, orbital floor, zygomatic body, and maxillary sinus wall. The images were divided into training, validation, and test datasets in a 6:2:2 ratio. Performance metrics were calculated for each category. A total of 13,988 axial and 14,107 coronal slices were retrieved. The trained algorithm achieved accuracy of 94.2-97.9%. Recall exceeded 90% across all categories, with sphenozygomatic suture fractures having the highest value (96.6%). Average precision was highest for zygomatic arch fractures (0.827) and lowest for zygomatic body fractures (0.692). The highest F1 score was 96.7% for zygomaticomaxillary suture fractures, and the lowest was 82.1% for zygomatic body fractures. Area under the curve (AUC) values were also highest for zygomaticomaxillary suture (0.943) and lowest for zygomatic body fractures (0.876). The YOLOv8 model demonstrated promising results in the automated detection of zygomatic fractures, achieving the highest performance in identifying fractures of the zygomaticomaxillary suture and zygomatic arch.

Equivariant Spatiotemporal Transformers with MDL-Guided Feature Selection for Malignancy Detection in Dynamic PET

Dadashkarimi, M.

medrxiv logopreprintAug 6 2025
Dynamic Positron Emission Tomography (PET) scans offer rich spatiotemporal data for detecting malignancies, but their high-dimensionality and noise pose significant challenges. We introduce a novel framework, the Equivariant Spatiotemporal Transformer with MDL-Guided Feature Selection (EST-MDL), which integrates group-theoretic symmetries, Kolmogorov complexity, and Minimum Description Length (MDL) principles. By enforcing spatial and temporal symmetries (e.g., translations and rotations) and leveraging MDL for robust feature selection, our model achieves improved generalization and interpretability. Evaluated on three realworld PET datasets--LUNG-PET, BRAIN-PET, and BREAST-PET--our approach achieves AUCs of 0.94, 0.92, and 0.95, respectively, outperforming CNNs, Vision Transformers (ViTs), and Graph Neural Networks (GNNs) in AUC, sensitivity, specificity, and computational efficiency. This framework offers a robust, interpretable solution for malignancy detection in clinical settings.

Automated vertebral bone quality score measurement on lumbar MRI using deep learning: Development and validation of an AI algorithm.

Jayasuriya NM, Feng E, Nathani KR, Delawan M, Katsos K, Bhagra O, Freedman BA, Bydon M

pubmed logopapersAug 5 2025
Bone health is a critical determinant of spine surgery outcomes, yet many patients undergo procedures without adequate preoperative assessment due to limitations in current bone quality assessment methods. This study aimed to develop and validate an artificial intelligence-based algorithm that predicts Vertebral Bone Quality (VBQ) scores from routine MRI scans, enabling improved preoperative identification of patients at risk for poor surgical outcomes. This study utilized 257 lumbar spine T1-weighted MRI scans from the SPIDER challenge dataset. VBQ scores were calculated through a three-step process: selecting the mid-sagittal slice, measuring vertebral body signal intensity from L1-L4, and normalizing by cerebrospinal fluid signal intensity. A YOLOv8 model was developed to automate region of interest placement and VBQ score calculation. The system was validated against manual annotations from 47 lumbar spine surgery patients, with performance evaluated using precision, recall, mean average precision, intraclass correlation coefficient, Pearson correlation, RMSE, and mean error. The YOLOv8 model demonstrated high accuracy in vertebral body detection (precision: 0.9429, recall: 0.9076, [email protected]: 0.9403, mAP@[0.5:0.95]: 0.8288). Strong interrater reliability was observed with ICC values of 0.95 (human-human), 0.88 and 0.93 (human-AI). Pearson correlations for VBQ scores between human and AI measurements were 0.86 and 0.9, with RMSE values of 0.58 and 0.42 respectively. The AI-based algorithm accurately predicts VBQ scores from routine lumbar MRIs. This approach has potential to enhance early identification and intervention for patients with poor bone health, leading to improved surgical outcomes. Further external validation is recommended to ensure generalizability and clinical applicability.

BrainSignsNET: A Deep Learning Model for 3D Anatomical Landmark Detection in the Human Brain Imaging

shirzadeh barough, s., Ventura, C., Bilgel, M., Albert, M., Miller, M. I., Moghekar, A.

medrxiv logopreprintAug 5 2025
Accurate detection of anatomical landmarks in brain Magnetic Resonance Imaging (MRI) scans is essential for reliable spatial normalization, image alignment, and quantitative neuroimaging analyses. In this study, we introduce BrainSignsNET, a deep learning framework designed for robust three-dimensional (3D) landmark detection. Our approach leverages a multi-task 3D convolutional neural network that integrates an attention decoder branch with a multi-class decoder branch to generate precise 3D heatmaps, from which landmark coordinates are extracted. The model was trained and internally validated on T1-weighted Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) scans from the Alzheimers Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study of Aging (BLSA), and the Biomarkers of Cognitive Decline in Adults at Risk for AD (BIOCARD) datasets and externally validated on a clinical dataset from the Johns Hopkins Hydrocephalus Clinic. The study encompassed 14,472 scans from 6,299 participants, representing a diverse demographic profile with a significant proportion of older adult participants, particularly those over 70 years of age. Extensive preprocessing and data augmentation strategies, including traditional MRI corrections and tailored 3D transformations, ensured data consistency and improved model generalizability. Performance metrics demonstrated that on internal validation BrainSignsNET achieved an overall mean Euclidean distance of 2.32 {+/-} 0.41 mm and 94.8% of landmarks localized within their anatomically defined 3D volumes in the external validation dataset. This improvement in accurate anatomical landmark detection on brain MRI scans should benefit many imaging tasks, including registration, alignment, and quantitative analyses.

A Novel Multimodal Framework for Early Detection of Alzheimers Disease Using Deep Learning

Tatwadarshi P Nagarhalli, Sanket Patil, Vishal Pande, Uday Aswalekar, Prafulla Patil

arxiv logopreprintAug 5 2025
Alzheimers Disease (AD) is a progressive neurodegenerative disorder that poses significant challenges in its early diagnosis, often leading to delayed treatment and poorer outcomes for patients. Traditional diagnostic methods, typically reliant on single data modalities, fall short of capturing the multifaceted nature of the disease. In this paper, we propose a novel multimodal framework for the early detection of AD that integrates data from three primary sources: MRI imaging, cognitive assessments, and biomarkers. This framework employs Convolutional Neural Networks (CNN) for analyzing MRI images and Long Short-Term Memory (LSTM) networks for processing cognitive and biomarker data. The system enhances diagnostic accuracy and reliability by aggregating results from these distinct modalities using advanced techniques like weighted averaging, even in incomplete data. The multimodal approach not only improves the robustness of the detection process but also enables the identification of AD at its earliest stages, offering a significant advantage over conventional methods. The integration of biomarkers and cognitive tests is particularly crucial, as these can detect Alzheimer's long before the onset of clinical symptoms, thereby facilitating earlier intervention and potentially altering the course of the disease. This research demonstrates that the proposed framework has the potential to revolutionize the early detection of AD, paving the way for more timely and effective treatments

The REgistry of Flow and Perfusion Imaging for Artificial INtelligEnce with PET(REFINE PET): Rationale and Design.

Ramirez G, Lemley M, Shanbhag A, Kwiecinski J, Miller RJH, Kavanagh PB, Liang JX, Dey D, Slipczuk L, Travin MI, Alexanderson E, Carvajal-Juarez I, Packard RRS, Al-Mallah M, Einstein AJ, Feher A, Acampa W, Knight S, Le VT, Mason S, Sanghani R, Wopperer S, Chareonthaitawee P, Buechel RR, Rosamond TL, deKemp RA, Berman DS, Di Carli MF, Slomka PJ

pubmed logopapersAug 5 2025
The REgistry of Flow and Perfusion Imaging for Artificial Intelligence with PET (REFINE PET) was established to collect multicenter PET and associated computed tomography (CT) images, together with clinical data and outcomes, into a comprehensive research resource. REFINE PET will enable validation and development of both standard and novel cardiac PET/CT processing methods. REFINE PET is a multicenter, international registry that contains both clinical and imaging data. The PET scans were processed using QPET software (Cedars-Sinai Medical Center, Los Angeles, CA), while the CT scans were processed using deep learning (DL) to detect coronary artery calcium (CAC). Patients were followed up for the occurrence of major adverse cardiovascular events (MACE), which include death, myocardial infarction, unstable angina, and late revascularization (>90 days from PET). The REFINE PET registry currently contains data for 35,588 patients from 14 sites, with additional patient data and sites anticipated. Comprehensive clinical data (including demographics, medical history, and stress test results) were integrated with more than 2200 imaging variables across 42 categories. The registry is poised to address a broad range of clinical questions, supported by correlating invasive angiography (within 6 months of MPI) in 5972 patients and a total of 9252 major adverse cardiovascular events during a median follow-up of 4.2 years. The REFINE PET registry leverages the integration of clinical, multimodality imaging, and novel quantitative and AI tools to advance the role of PET/CT MPI in diagnosis and risk stratification.

Diagnostic Performance of Imaging-Based Artificial Intelligence Models for Preoperative Detection of Cervical Lymph Node Metastasis in Clinically Node-Negative Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis.

Li B, Cheng G, Mo Y, Dai J, Cheng S, Gong S, Li H, Liu Y

pubmed logopapersAug 4 2025
This systematic review and meta-analysis evaluated the performance of imaging-based artificial intelligence (AI) models in diagnosing preoperative cervical lymph node metastasis (LNM) in clinically node-negative (cN0) papillary thyroid carcinoma (PTC). We conducted a literature search in PubMed, Embase, and Web of Science until February 25, 2025. Studies were selected that focused on imaging-based AI models for predicting cervical LNM in cN0 PTC. The diagnostic performance metrics were analyzed using a bivariate random-effects model, and study quality was assessed with the QUADAS-2 tool. From 671 articles, 11 studies involving 3366 patients were included. Ultrasound (US)-based AI models showed pooled sensitivity of 0.79 and specificity of 0.82, significantly higher than radiologists (p < 0.001). CT-based AI models demonstrated sensitivity of 0.78 and specificity of 0.89. Imaging-based AI models, particularly US-based AI, show promising diagnostic performance. There is a need for further multicenter prospective studies for validation. PROSPERO: (CRD420251063416).

Automated detection of lacunes in brain MR images using SAM with robust prompts using self-distillation and anatomy-informed priors.

Deepika P, Shanker G, Narayanan R, Sundaresan V

pubmed logopapersAug 4 2025
Lacunes, which are small fluid-filled cavities in the brain, are signs of cerebral small vessel disease and have been clinically associated with various neurodegenerative and cerebrovascular diseases. Hence, accurate detection of lacunes is crucial and is one of the initial steps for the precise diagnosis of these diseases. However, developing a robust and consistently reliable method for detecting lacunes is challenging because of the heterogeneity in their appearance, contrast, shape, and size. In this study, we propose a lacune detection method using the Segment Anything Model (SAM), guided by point prompts from a candidate prompt generator. The prompt generator initially detects potential lacunes with a high sensitivity using a composite loss function. The true lacunes are then selected using SAM by discriminating their characteristics from mimics such as the sulcus and enlarged perivascular spaces, imitating the clinicians' strategy of examining the potential lacunes along all three axes. False positives are further reduced by adaptive thresholds based on the region wise prevalence of lacunes. We evaluated our method on two diverse, multi-centric MRI datasets, VALDO and ISLES, comprising only FLAIR sequences. Despite diverse imaging conditions and significant variations in slice thickness (0.5-6 mm), our method achieved sensitivities of 84% and 92%, with average false positive rates of 0.05 and 0.06 per slice in ISLES and VALDO datasets respectively. The proposed method demonstrates robust performance across varied imaging conditions and outperformed the state-of-the-art methods, demonstrating its effectiveness in lacune detection and quantification.
Page 5 of 36358 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.