Sort by:
Page 5 of 34333 results

Risk inventory and mitigation actions for AI in medical imaging-a qualitative study of implementing standalone AI for screening mammography.

Gerigoorian A, Kloub M, Dembrower K, Engwall M, Strand F

pubmed logopapersJul 30 2025
Recent prospective studies have shown that AI may be integrated in double-reader settings to increase cancer detection. The ScreenTrustCAD study was conducted at the breast radiology department at the Capio S:t Göran Hospital where AI is now implemented in clinical practice. This study reports on how the hospital prepared by exploring risks from an enterprise risk management perspective, i.e., applying a holistic and proactive perspective, and developed risk mitigation actions. The study was conducted as an integral part of the preparations before implementing AI in a breast imaging department. Collaborative ideation sessions were conducted with personnel at the hospital, either directly or indirectly involved with AI, to identify risks. Two external experts with competencies in cybersecurity, machine learning, and the ethical aspects of AI, were interviewed as a complement. The risks identified were analyzed according to an Enterprise Risk Management framework, adopted for healthcare, that assumes risks to be emerging from eight different domains. Finally, appropriate risk mitigation actions were identified and discussed. Twenty-three risks were identified covering seven of eight risk domains, in turn generating 51 suggested risk mitigation actions. Not only does the study indicate the emergence of patient safety risks, but it also shows that there are operational, strategic, financial, human capital, legal, and technological risks. The risks with most suggested mitigation actions were ‘Radiographers unable to answer difficult questions from patients’, ‘Increased risk that patient-reported symptoms are missed by the single radiologist’, ‘Increased pressure on the single reader knowing they are the only radiologist to catch a mistake by AI’, and ‘The performance of the AI algorithm might deteriorate’. Before a clinical integration of AI, hospitals should expand, identify, and address risks beyond immediate patient safety by applying comprehensive and proactive risk management. The online version contains supplementary material available at 10.1186/s12913-025-13176-9.

Detection of large vessel occlusion using artificial intelligence tools: A systematic review and meta-analysis.

Dantas J, Barros G, Mutarelli A, Dagostin C, Romeiro P, Almirón G, Felix N, Pinheiro A, Bannach MA

pubmed logopapersJul 30 2025
Large vessel occlusion (LVO) accounts for a third of all ischemic strokes. Artificial intelligence (AI) has shown good accuracy in identifying LVOs on computed tomography angiograms (CTA). We sought to analyze whether AI-adjudicated CTA improves workflow times and clinical outcomes in patients with confirmed LVOs. We systematically searched PubMed, Embase, and Web of Science for studies comparing initial radiological assessment assisted by AI softwares versus standard assessment of patients with acute LVO strokes. Results were pooled using a random-effects model as mean differences for continuous outcomes or odds ratio (OR) for dichotomous outcomes, along with 95% confidence intervals (CI). We included 9 studies comprising 1,270 patients, of whom 671 (52.8%) had AI-assisted radiological assessment. AI consistently improved treatment times when compared to standard assessment, as evidenced by a mean reduction of 20.55 minutes in door-to-groin time (95% CI -36.69 to -4.42 minutes; p<0.01) and a reduction of 14.99 minutes in CTA to reperfusion (95% CI -28.45 to -1.53 minutes; p=0.03). Functional independence, defined as a modified Rankin scale 0-2, occurred at similar rates in the AI-supported group and with the standard workflow (OR 1.27; 95% CI 0.92 to 1.76; p=0.14), as did mortality (OR 0.71; 95% CI 0.27 to 1.88; p=0.49). The incorporation of AI softwares for LVO detection in acute ischemic stroke enhanced workflow efficiency and was associated with decreased time to treatment. However, AI did not improve clinical outcomes as compared with standard assessment.

Deep learning for tooth detection and segmentation in panoramic radiographs: a systematic review and meta-analysis.

Bonfanti-Gris M, Herrera A, Salido Rodríguez-Manzaneque MP, Martínez-Rus F, Pradíes G

pubmed logopapersJul 30 2025
This systematic review and meta-analysis aimed to summarize and evaluate the available information regarding the performance of deep learning methods for tooth detection and segmentation in orthopantomographies. Electronic databases (Medline, Embase and Cochrane) were searched up to September 2023 for relevant observational studies and both, randomized and controlled clinical trials. Two reviewers independently conducted the study selection, data extraction, and quality assessments. GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) assessment was adopted for collective grading of the overall body of evidence. From the 2,207 records identified, 20 studies were included in the analysis. Meta-analysis was conducted for the comparison of mesiodens detection and segmentation (n = 6) using sensitivity and specificity as the two main diagnostic parameters. A graphical summary of the analysis was also plotted and a Hierarchical Summary Receiver Operating Characteristic curve, prediction region, summary point, and confidence region were illustrated. The included studies quantitative analysis showed pooled sensitivity, specificity, positive LR, negative LR, and diagnostic odds ratio of 0.92 (95% confidence interval [CI], 0.84-0.96), 0.94 (95% CI, 0.89-0.97), 15.7 (95% CI, 7.6-32.2), 0.08 (95% CI, 0.04-0.18), and 186 (95% CI, 44-793), respectively. A graphical summary of the meta-analysis was plotted based on sensitivity and specificity. Hierarchical Summary Receiver Operating Characteristic curves showed a positive correlation between logit-transformed sensitivity and specificity (r = 0.886). Based on the results of the meta-analysis and GRADE assessment, a moderate recommendation is advised to dental operators when relying on AI-based tools for tooth detection and segmentation in panoramic radiographs.

A hybrid M-DbneAlexnet for brain tumour detection using MRI images.

Kotti J, Chalasani V, Rajan C

pubmed logopapersJul 29 2025
Brain Tumour (BT) is characterised by the uncontrolled proliferation of the cells within the brain which can result in cancer. Detecting BT at the early stage significantly increases the patient's survival chances. The existing BT detection methods often struggle with high computational complexity, limited feature discrimination, and poor generalisation. To mitigate these issues, an effective brain tumour detection and segmentation method based on A hybrid network named MobileNet- Deep Batch-Normalized eLU AlexNet (M-DbneAlexnet) is developed based on Magnetic Resonance Imaging (MRI). The image enhancement is done by Piecewise Linear Transformation (PLT) function. BT region is segmented Transformer Brain Tumour Segmentation (TransBTSV2). Then feature extraction is done. Finally, BT is detected using M-DbneAlexnet model, which is devised by combining MobileNet and Deep Batch-Normalized eLU AlexNet (DbneAlexnet).<b>Results:</b> The proposed model achieved an accuracy of 92.68%, sensitivity of 93.02%, and specificity of 92.85%, demonstrating its effectiveness in accurately detecting brain tumors from MRI images. The proposed model enhances training speed and performs well on limited datasets, making it effective for distinguishing between tumor and healthy tissues. Its practical utility lies in enabling early detection and diagnosis of brain tumors, which can significantly reduce mortality rates.

Determining the scanning range of coronary computed tomography angiography based on deep learning.

Zhao YH, Fan YH, Wu XY, Qin T, Sun QT, Liang BH

pubmed logopapersJul 28 2025
Coronary computed tomography angiography (CCTA) is essential for diagnosing coronary artery disease as it provides detailed images of the heart's blood vessels to identify blockages or abnormalities. Traditionally, determining the computed tomography (CT) scanning range has relied on manual methods due to limited automation in this area. To develop and evaluate a novel deep learning approach to automate the determination of CCTA scan ranges using anteroposterior scout images. A retrospective analysis was conducted on chest CT data from 1388 patients at the Radiology Department of the First Affiliated Hospital of a university-affiliated hospital, collected between February 27 and March 27, 2024. A deep learning model was trained on anteroposterior scout images with annotations based on CCTA standards. The dataset was split into training (672 cases), validation (167 cases), and test (167 cases) sets to ensure robust model evaluation. The study demonstrated exceptional performance on the test set, achieving a mean average precision (mAP50) of 0.995 and mAP50-95 of 0.994 for determining CCTA scan ranges. This study demonstrates that: (1) Anteroposterior scout images can effectively estimate CCTA scan ranges; and (2) Estimates can be dynamically adjusted to meet the needs of various medical institutions.

CVT-HNet: a fusion model for recognizing perianal fistulizing Crohn's disease based on CNN and ViT.

Li L, Wang Z, Wang C, Chen T, Deng K, Wei H, Wang D, Li J, Zhang H

pubmed logopapersJul 28 2025
Accurate identification of anal fistulas is essential, as it directly impacts the severity of subsequent perianal infections, prognostic indicators, and overall treatment outcomes. Traditional manual recognition methods are inefficient. In response, computer vision methods have been adopted to improve efficiency. Convolutional neural networks(CNNs) are the main basis for detecting anal fistulas in current computer vision techniques. However, these methods often struggle to capture long-range dependencies effectively, which results in inadequate handling of images of anal fistulas. This study proposes a new fusion model, CVT-HNet, that integrates MobileNet with vision transformer technology. This design utilizes CNNs to extract local features and Transformers to capture long-range dependencies. In addition, the MobileNetV2 with Coordinate Attention mechanism and encoder modules are optimized to improve the precision of detecting anal fistulas. Comparative experimental results show that CVT-HNet achieves an accuracy of 80.66% with significant robustness. It surpasses both pure Transformer architecture models and other fusion networks. Internal validation results demonstrate the reliability and consistency of CVT-HNet. External validation demonstrates that our model exhibits commendable transportability and generalizability. In visualization analysis, CVT-HNet exhibits a more concentrated focus on the region of interest in images of anal fistulas. Furthermore, the contribution of each CVT-HNet component module is evaluated by ablation experiments. The experimental results highlight the superior performance and practicality of CVT-HNet in detecting anal fistulas. By combining local and global information, CVT-HNet demonstrates strong performance. The model not only achieves high accuracy and robustness but also exhibits strong generalizability. This makes it suitable for real-world applications where variability in data is common.These findings emphasize its effectiveness in clinical contexts.

Self-Assessment of acute rib fracture detection system from chest X-ray: Preliminary study for early radiological diagnosis.

Lee HK, Kim HS, Kim SG, Park JY

pubmed logopapersJul 28 2025
ObjectiveDetecting and accurately diagnosing rib fractures in chest radiographs is a challenging and time-consuming task for radiologists. This study presents a novel deep learning system designed to automate the detection and segmentation of rib fractures in chest radiographs.MethodsThe proposed method combines CenterNet with HRNet v2 for precise fracture region identification and HRNet-W48 with contextual representation to enhance rib segmentation. A dataset consisting of 1006 chest radiographs from a tertiary hospital in Korea was used, with a split of 7:2:1 for training, validation, and testing.ResultsThe rib fracture detection component achieved a sensitivity of 0.7171, indicating its effectiveness in identifying fractures. Additionally, the rib segmentation performance was measured by a dice score of 0.86, demonstrating its accuracy in delineating rib structures. Visual assessment results further highlight the model's capability to pinpoint fractures and segment ribs accurately.ConclusionThis innovative approach holds promise for improving rib fracture detection and rib segmentation, offering potential benefits in clinical practice for more efficient and accurate diagnosis in the field of medical image analysis.

Artificial intelligence-powered software outperforms interventional cardiologists in assessment of IVUS-based stent optimization.

Rubio PM, Garcia-Garcia HM, Galo J, Chaturvedi A, Case BC, Mintz GS, Ben-Dor I, Hashim H, Waksman R

pubmed logopapersJul 26 2025
Optimal stent deployment assessed by intravascular ultrasound (IVUS) is associated with improved outcomes after percutaneous coronary intervention (PCI). However, IVUS remains underutilized due to its time-consuming analysis and reliance on operator expertise. AVVIGO™+, an FDA-approved artificial intelligence (AI) software, offers automated lesion assessment, but its performance for stent evaluation has not been thoroughly investigated. To assess whether an artificial intelligence-powered software (AVVIGO™+) provides a superior evaluation of IVUS-based stent expansion index (%Stent expansion = Minimum Stent Area (MSA) / Distal reference lumen area) and geographic miss (i.e. >50 % plaque burden - PB - at stent edges) compared to the current gold standard method performed by interventional cardiologists (IC), defined as frame-by-frame visual assessment by interventional cardiologists, selecting the MSA and the reference frame with the largest lumen area within 5 mm of the stent edge, following expert consensus. This retrospective study included 60 patients (47,997 IVUS frames) who underwent IVUS guided PCI, independently analyzed by IC and AVVIGO™+. Assessments included minimum stent area (MSA), stent expansion index, and PB at proximal and distal reference segments. For expansion, a threshold of 80 % was used to define suboptimal results. The time required for expansion analysis was recorded for both methods. Concordance, absolute and relative differences were evaluated. AVVIGO™ + consistently identified lower mean expansion (70.3 %) vs. IC (91.2 %), (p < 0.0001), primarily due to detecting frames with smaller MSA values (5.94 vs. 7.19 mm<sup>2</sup>, p = 0.0053). This led to 25 discordant cases in which AVVIGO™ + reported suboptimal expansion while IC classified the result as adequate. The analysis time was significantly shorter with AVVIGO™ + (0.76 ± 0.39 min) vs IC (1.89 ± 0.62 min) (p < 0.0001), representing a 59.7 % reduction. For geographic miss, AVVIGO™ + reported higher PB than IC at both distal (51.8 % vs. 43.0 %, p < 0.0001) and proximal (50.0 % vs. 43.0 %, p = 0.0083) segments. When applying the 50 % PB threshold, AVVIGO™ + identified PB ≥50 % not seen by IC in 12 cases (6 distal, 6 proximal). AVVIGO™ + demonstrated improved detection of suboptimal stent expansion and geographic miss compared to interventional cardiologists, while also significantly reducing analysis time. These findings suggest that AI-based platforms may offer a more reliable and efficient approach to IVUS-guided stent optimization, with potential to enhance consistency in clinical practice.

Synomaly noise and multi-stage diffusion: A novel approach for unsupervised anomaly detection in medical images.

Bi Y, Huang L, Clarenbach R, Ghotbi R, Karlas A, Navab N, Jiang Z

pubmed logopapersJul 26 2025
Anomaly detection in medical imaging plays a crucial role in identifying pathological regions across various imaging modalities, such as brain MRI, liver CT, and carotid ultrasound (US). However, training fully supervised segmentation models is often hindered by the scarcity of expert annotations and the complexity of diverse anatomical structures. To address these issues, we propose a novel unsupervised anomaly detection framework based on a diffusion model that incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process. Synomaly noise introduces synthetic anomalies into healthy images during training, allowing the model to effectively learn anomaly removal. The multi-stage diffusion process is introduced to progressively denoise images, preserving fine details while improving the quality of anomaly-free reconstructions. The generated high-fidelity counterfactual healthy images can further enhance the interpretability of the segmentation models, as well as provide a reliable baseline for evaluating the extent of anomalies and supporting clinical decision-making. Notably, the unsupervised anomaly detection model is trained purely on healthy images, eliminating the need for anomalous training samples and pixel-level annotations. We validate the proposed approach on brain MRI, liver CT datasets, and carotid US. The experimental results demonstrate that the proposed framework outperforms existing state-of-the-art unsupervised anomaly detection methods, achieving performance comparable to fully supervised segmentation models in the US dataset. Ablation studies further highlight the contributions of Synomaly noise and the multi-stage diffusion process in improving anomaly segmentation. These findings underscore the potential of our approach as a robust and annotation-efficient alternative for medical anomaly detection. Code:https://github.com/yuan-12138/Synomaly.

Could a New Method of Acromiohumeral Distance Measurement Emerge? Artificial Intelligence vs. Physician.

Dede BT, Çakar İ, Oğuz M, Alyanak B, Bağcıer F

pubmed logopapersJul 25 2025
The aim of this study was to evaluate the reliability of ChatGPT-4 measurement of acromiohumeral distance (AHD), a popular assessment in patients with shoulder pain. In this retrospective study, 71 registered shoulder magnetic resonance imaging (MRI) scans were included. AHD measurements were performed on a coronal oblique T1 sequence with a clear view of the acromion and humerus. Measurements were performed by an experienced radiologist twice at 3-day intervals and by ChatGPT-4 twice at 3-day intervals in different sessions. The first, second, and mean values of AHD measured by the physician were 7.6 ± 1.7, 7.5 ± 1.6, and 7.6 ± 1.7, respectively. The first, second, and mean values measured by ChatGPT-4 were 6.7 ± 0.8, 7.3 ± 1.1, and 7.1 ± 0.8, respectively. There was a significant difference between the physician and ChatGPT-4 between the first and mean measurements (p < 0.0001 and p = 0.009, respectively). However, there was no significant difference between the second measurements (p = 0.220). Intrarater reliability for the physician was excellent (ICC = 0.99); intrarater reliability for ChatGPT-4 was poor (ICC = 0.41). Interrater reliability was poor (ICC = 0.45). In conclusion, this study demonstrated that the reliability of ChatGPT-4 in AHD measurements is inferior to that of an experienced radiologist. This study may help improve the possible future contribution of large language models to medical science.
Page 5 of 34333 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.