Equivariant Spatiotemporal Transformers with MDL-Guided Feature Selection for Malignancy Detection in Dynamic PET

Authors

Dadashkarimi, M.

Affiliations (1)

  • Army university of medical sciences

Abstract

Dynamic Positron Emission Tomography (PET) scans offer rich spatiotemporal data for detecting malignancies, but their high-dimensionality and noise pose significant challenges. We introduce a novel framework, the Equivariant Spatiotemporal Transformer with MDL-Guided Feature Selection (EST-MDL), which integrates group-theoretic symmetries, Kolmogorov complexity, and Minimum Description Length (MDL) principles. By enforcing spatial and temporal symmetries (e.g., translations and rotations) and leveraging MDL for robust feature selection, our model achieves improved generalization and interpretability. Evaluated on three realworld PET datasets--LUNG-PET, BRAIN-PET, and BREAST-PET--our approach achieves AUCs of 0.94, 0.92, and 0.95, respectively, outperforming CNNs, Vision Transformers (ViTs), and Graph Neural Networks (GNNs) in AUC, sensitivity, specificity, and computational efficiency. This framework offers a robust, interpretable solution for malignancy detection in clinical settings.

Topics

radiology and imaging

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.