Sort by:
Page 5 of 39382 results

AdvMIM: Adversarial Masked Image Modeling for Semi-Supervised Medical Image Segmentation

Lei Zhu, Jun Zhou, Rick Siow Mong Goh, Yong Liu

arxiv logopreprintJun 25 2025
Vision Transformer has recently gained tremendous popularity in medical image segmentation task due to its superior capability in capturing long-range dependencies. However, transformer requires a large amount of labeled data to be effective, which hinders its applicability in annotation scarce semi-supervised learning scenario where only limited labeled data is available. State-of-the-art semi-supervised learning methods propose combinatorial CNN-Transformer learning to cross teach a transformer with a convolutional neural network, which achieves promising results. However, it remains a challenging task to effectively train the transformer with limited labeled data. In this paper, we propose an adversarial masked image modeling method to fully unleash the potential of transformer for semi-supervised medical image segmentation. The key challenge in semi-supervised learning with transformer lies in the lack of sufficient supervision signal. To this end, we propose to construct an auxiliary masked domain from original domain with masked image modeling and train the transformer to predict the entire segmentation mask with masked inputs to increase supervision signal. We leverage the original labels from labeled data and pseudo-labels from unlabeled data to learn the masked domain. To further benefit the original domain from masked domain, we provide a theoretical analysis of our method from a multi-domain learning perspective and devise a novel adversarial training loss to reduce the domain gap between the original and masked domain, which boosts semi-supervised learning performance. We also extend adversarial masked image modeling to CNN network. Extensive experiments on three public medical image segmentation datasets demonstrate the effectiveness of our method, where our method outperforms existing methods significantly. Our code is publicly available at https://github.com/zlheui/AdvMIM.

[The analysis of invention patents in the field of artificial intelligent medical devices].

Zhang T, Chen J, Lu Y, Xu D, Yan S, Ouyang Z

pubmed logopapersJun 25 2025
The emergence of new-generation artificial intelligence technology has brought numerous innovations to the healthcare field, including telemedicine and intelligent care. However, the artificial intelligent medical device sector still faces significant challenges, such as data privacy protection and algorithm reliability. This study, based on invention patent analysis, revealed the technological innovation trends in the field of artificial intelligent medical devices from aspects such as patent application time trends, hot topics, regional distribution, and innovation players. The results showed that global invention patent applications had remained active, with technological innovations primarily focused on medical image processing, physiological signal processing, surgical robots, brain-computer interfaces, and intelligent physiological parameter monitoring technologies. The United States and China led the world in the number of invention patent applications. Major international medical device giants, such as Philips, Siemens, General Electric, and Medtronic, were at the forefront of global technological innovation, with significant advantages in patent application volumes and international market presence. Chinese universities and research institutes, such as Zhejiang University, Tianjin University, and the Shenzhen Institute of Advanced Technology, had demonstrated notable technological innovation, with a relatively high number of patent applications. However, their overseas market expansion remained limited. This study provides a comprehensive overview of the technological innovation trends in the artificial intelligent medical device field and offers valuable information support for industry development from an informatics perspective.

Interventional Radiology Reporting Standards and Checklist for Artificial Intelligence Research Evaluation (iCARE).

Anibal JT, Huth HB, Boeken T, Daye D, Gichoya J, Muñoz FG, Chapiro J, Wood BJ, Sze DY, Hausegger K

pubmed logopapersJun 25 2025
As artificial intelligence (AI) becomes increasingly prevalent within interventional radiology (IR) research and clinical practice, steps must be taken to ensure the robustness of novel technological systems presented in peer-reviewed journals. This report introduces comprehensive standards and an evaluation checklist (iCARE) that covers the application of modern AI methods in IR-specific contexts. The iCARE checklist encompasses the full "code-to-clinic" pipeline of AI development, including dataset curation, pre-training, task-specific training, explainability, privacy protection, bias mitigation, reproducibility, and model deployment. The iCARE checklist aims to support the development of safe, generalizable technologies for enhancing IR workflows, the delivery of care, and patient outcomes.

[AI-enabled clinical decision support systems: challenges and opportunities].

Tschochohei M, Adams LC, Bressem KK, Lammert J

pubmed logopapersJun 25 2025
Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.

Med-Art: Diffusion Transformer for 2D Medical Text-to-Image Generation

Changlu Guo, Anders Nymark Christensen, Morten Rieger Hannemose

arxiv logopreprintJun 25 2025
Text-to-image generative models have achieved remarkable breakthroughs in recent years. However, their application in medical image generation still faces significant challenges, including small dataset sizes, and scarcity of medical textual data. To address these challenges, we propose Med-Art, a framework specifically designed for medical image generation with limited data. Med-Art leverages vision-language models to generate visual descriptions of medical images which overcomes the scarcity of applicable medical textual data. Med-Art adapts a large-scale pre-trained text-to-image model, PixArt-$\alpha$, based on the Diffusion Transformer (DiT), achieving high performance under limited data. Furthermore, we propose an innovative Hybrid-Level Diffusion Fine-tuning (HLDF) method, which enables pixel-level losses, effectively addressing issues such as overly saturated colors. We achieve state-of-the-art performance on two medical image datasets, measured by FID, KID, and downstream classification performance.

[Analysis of the global competitive landscape in artificial intelligence medical device research].

Chen J, Pan L, Long J, Yang N, Liu F, Lu Y, Ouyang Z

pubmed logopapersJun 25 2025
The objective of this study is to map the global scientific competitive landscape in the field of artificial intelligence (AI) medical devices using scientific data. A bibliometric analysis was conducted using the Web of Science Core Collection to examine global research trends in AI-based medical devices. As of the end of 2023, a total of 55 147 relevant publications were identified worldwide, with 76.6% published between 2018 and 2024. Research in this field has primarily focused on AI-assisted medical image and physiological signal analysis. At the national level, China (17 991 publications) and the United States (14 032 publications) lead in output. China has shown a rapid increase in publication volume, with its 2023 output exceeding twice that of the U.S.; however, the U.S. maintains a higher average citation per paper (China: 16.29; U.S.: 35.99). At the institutional level, seven Chinese institutions and three U.S. institutions rank among the global top ten in terms of publication volume. At the researcher level, prominent contributors include Acharya U Rajendra, Rueckert Daniel and Tian Jie, who have extensively explored AI-assisted medical imaging. Some researchers have specialized in specific imaging applications, such as Yang Xiaofeng (AI-assisted precision radiotherapy for tumors) and Shen Dinggang (brain imaging analysis). Others, including Gao Xiaorong and Ming Dong, focus on AI-assisted physiological signal analysis. The results confirm the rapid global development of AI in the medical device field, with "AI + imaging" emerging as the most mature direction. China and the U.S. maintain absolute leadership in this area-China slightly leads in publication volume, while the U.S., having started earlier, demonstrates higher research quality. Both countries host a large number of active research teams in this domain.

[Practical artificial intelligence for urology : Technical principles, current application and future implementation of AI in practice].

Rodler S, Hügelmann K, von Knobloch HC, Weiss ML, Buck L, Kohler J, Fabian A, Jarczyk J, Nuhn P

pubmed logopapersJun 24 2025
Artificial intelligence (AI) is a disruptive technology that is currently finding widespread application after having long been confined to the domain of specialists. In urology, in particular, new fields of application are continuously emerging, which are being studied both in preclinical basic research and in clinical applications. Potential applications include image recognition in the operating room or interpreting images from radiology and pathology, the automatic measurement of urinary stones and radiotherapy. Certain medical devices, particularly in the field of AI-based predictive biomarkers, have already been incorporated into international guidelines. In addition, AI is playing an increasingly more important role in administrative tasks and is expected to lead to enormous changes, especially in the outpatient sector. For urologists, it is becoming increasingly more important to engage with this technology, to pursue appropriate training and therefore to optimally implement AI into the treatment of patients and in the management of their practices or hospitals.

Refining cardiac segmentation from MRI volumes with CT labels for fine anatomy of the ascending aorta.

Oda H, Wakamori M, Akita T

pubmed logopapersJun 24 2025
Magnetic resonance imaging (MRI) is time-consuming, posing challenges in capturing clear images of moving organs, such as cardiac structures, including complex structures such as the Valsalva sinus. This study evaluates a computed tomography (CT)-guided refinement approach for cardiac segmentation from MRI volumes, focused on preserving the detailed shape of the Valsalva sinus. Owing to the low spatial contrast around the Valsalva sinus in MRI, labels from separate computed tomography (CT) volumes are used to refine the segmentation. Deep learning techniques are employed to obtain initial segmentation from MRI volumes, followed by the detection of the ascending aorta's proximal point. This detected proximal point is then used to select the most similar label from CT volumes of other patients. Non-rigid registration is further applied to refine the segmentation. Experiments conducted on 20 MRI volumes with labels from 20 CT volumes exhibited a slight decrease in quantitative segmentation accuracy. The CT-guided method demonstrated the precision (0.908), recall (0.746), and Dice score (0.804) for the ascending aorta compared with those obtained by nnU-Net alone (0.903, 0.770, and 0.816, respectively). Although some outputs showed bulge-like structures near the Valsalva sinus, an improvement in quantitative segmentation accuracy could not be validated.

Assessing Risk of Stealing Proprietary Models for Medical Imaging Tasks

Ankita Raj, Harsh Swaika, Deepankar Varma, Chetan Arora

arxiv logopreprintJun 24 2025
The success of deep learning in medical imaging applications has led several companies to deploy proprietary models in diagnostic workflows, offering monetized services. Even though model weights are hidden to protect the intellectual property of the service provider, these models are exposed to model stealing (MS) attacks, where adversaries can clone the model's functionality by querying it with a proxy dataset and training a thief model on the acquired predictions. While extensively studied on general vision tasks, the susceptibility of medical imaging models to MS attacks remains inadequately explored. This paper investigates the vulnerability of black-box medical imaging models to MS attacks under realistic conditions where the adversary lacks access to the victim model's training data and operates with limited query budgets. We demonstrate that adversaries can effectively execute MS attacks by using publicly available datasets. To further enhance MS capabilities with limited query budgets, we propose a two-step model stealing approach termed QueryWise. This method capitalizes on unlabeled data obtained from a proxy distribution to train the thief model without incurring additional queries. Evaluation on two medical imaging models for Gallbladder Cancer and COVID-19 classification substantiates the effectiveness of the proposed attack. The source code is available at https://github.com/rajankita/QueryWise.

Prompt learning with bounding box constraints for medical image segmentation.

Gaillochet M, Noori M, Dastani S, Desrosiers C, Lombaert H

pubmed logopapersJun 24 2025
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multi-modal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code will be available upon acceptance.
Page 5 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.