Sort by:
Page 5 of 878 results

The radiologist and data: Do we add value or is data just data?

Fishman EK, Soyer P, Hellmann DB, Chu LC

pubmed logopapersJun 1 2025
Artificial intelligence in radiology critically depends on vast amounts of quality data, and there are controversies surrounding the topic of data ownership. In the current clinical framework, the secondary use of clinical data should be treated as a form of public good to benefit future patients. In this article, we propose that the physicians' input in data curation and interpretation adds value to the data and is crucial for building clinically relevant artificial intelligence models.

The integration of artificial intelligence into clinical medicine: Trends, challenges, and future directions.

Aravazhi PS, Gunasekaran P, Benjamin NZY, Thai A, Chandrasekar KK, Kolanu ND, Prajjwal P, Tekuru Y, Brito LV, Inban P

pubmed logopapersJun 1 2025
AI has emerged as a transformative force in clinical medicine, changing the diagnosis, treatment, and management of patients. Tools have been derived for working with ML, DL, and NLP algorithms to analyze large complex medical datasets with unprecedented accuracy and speed, thereby improving diagnostic precision, treatment personalization, and patient care outcomes. For example, CNNs have dramatically improved the accuracy of medical imaging diagnoses, and NLP algorithms have greatly helped extract insights from unstructured data, including EHRs. However, there are still numerous challenges that face AI integration into clinical workflows, including data privacy, algorithmic bias, ethical dilemmas, and problems with the interpretability of "black-box" AI models. These barriers have thus far prevented the widespread application of AI in health care, and its possible trends, obstacles, and future implications are necessary to be systematically explored. The purpose of this paper is, therefore, to assess the current trends in AI applications in clinical medicine, identify those obstacles that are hindering adoption, and identify possible future directions. This research hopes to synthesize evidence from other peer-reviewed articles to provide a more comprehensive understanding of the role that AI plays to advance clinical practices, improve patient outcomes, or enhance decision-making. A systematic review was done according to the PRISMA guidelines to explore the integration of Artificial Intelligence in clinical medicine, including trends, challenges, and future directions. PubMed, Cochrane Library, Web of Science, and Scopus databases were searched for peer-reviewed articles from 2014 to 2024 with keywords such as "Artificial Intelligence in Medicine," "AI in Clinical Practice," "Machine Learning in Healthcare," and "Ethical Implications of AI in Medicine." Studies focusing on AI application in diagnostics, treatment planning, and patient care reporting measurable clinical outcomes were included. Non-clinical AI applications and articles published before 2014 were excluded. Selected studies were screened for relevance, and then their quality was critically appraised to synthesize data reliably and rigorously. This systematic review includes the findings of 8 studies that pointed out the transformational role of AI in clinical medicine. AI tools, such as CNNs, had diagnostic accuracy more than the traditional methods, particularly in radiology and pathology. Predictive models efficiently supported risk stratification, early disease detection, and personalized medicine. Despite these improvements, significant hurdles, including data privacy, algorithmic bias, and resistance from clinicians regarding the "black-box" nature of AI, had yet to be surmounted. XAI has emerged as an attractive solution that offers the promise to enhance interpretability and trust. As a whole, AI appeared promising in enhancing diagnostics, treatment personalization, and clinical workflows by dealing with systemic inefficiencies. The transformation potential of AI in clinical medicine can transform diagnostics, treatment strategies, and efficiency. Overcoming obstacles such as concerns about data privacy, the danger of algorithmic bias, and difficulties with interpretability may pave the way for broader use and facilitate improvement in patient outcomes while transforming clinical workflows to bring sustainability into healthcare delivery.

AI image analysis as the basis for risk-stratified screening.

Strand F

pubmed logopapersJun 1 2025
Artificial intelligence (AI) has emerged as a transformative tool in breast cancer screening, with two distinct applications: computer-aided cancer detection (CAD) and risk prediction. While AI CAD systems are slowly finding its way into clinical practice to assist radiologists or make independent reads, this review focuses on AI risk models, which aim to predict a patient's likelihood of being diagnosed with breast cancer within a few years after negative screening. Unlike AI CAD systems, AI risk models are mainly explored in research settings without widespread clinical adoption. This review synthesizes advances in AI-driven risk prediction models, from traditional imaging biomarkers to cutting-edge deep learning methodologies and multimodal approaches. Contributions by leading researchers are explored with critical appraisal of their methods and findings. Ethical, practical, and clinical challenges in implementing AI models are also discussed, with an emphasis on real-world applications. This review concludes by proposing future directions to optimize the adoption of AI tools in breast cancer screening and improve equity and outcomes for diverse populations.

ESR Essentials: how to get to valuable radiology AI: the role of early health technology assessment-practice recommendations by the European Society of Medical Imaging Informatics.

Kemper EHM, Erenstein H, Boverhof BJ, Redekop K, Andreychenko AE, Dietzel M, Groot Lipman KBW, Huisman M, Klontzas ME, Vos F, IJzerman M, Starmans MPA, Visser JJ

pubmed logopapersJun 1 2025
AI tools in radiology are revolutionising the diagnosis, evaluation, and management of patients. However, there is a major gap between the large number of developed AI tools and those translated into daily clinical practice, which can be primarily attributed to limited usefulness and trust in current AI tools. Instead of technically driven development, little effort has been put into value-based development to ensure AI tools will have a clinically relevant impact on patient care. An iterative comprehensive value evaluation process covering the complete AI tool lifecycle should be part of radiology AI development. For value assessment of health technologies, health technology assessment (HTA) is an extensively used and comprehensive method. While most aspects of value covered by HTA apply to radiology AI, additional aspects, including transparency, explainability, and robustness, are unique to radiology AI and crucial in its value assessment. Additionally, value assessment should already be included early in the design stage to determine the potential impact and subsequent requirements of the AI tool. Such early assessment should be systematic, transparent, and practical to ensure all stakeholders and value aspects are considered. Hence, early value-based development by incorporating early HTA will lead to more valuable AI tools and thus facilitate translation to clinical practice. CLINICAL RELEVANCE STATEMENT: This paper advocates for the use of early value-based assessments. These assessments promote a comprehensive evaluation on how an AI tool in development can provide value in clinical practice and thus help improve the quality of these tools and the clinical process they support. KEY POINTS: Value in radiology AI should be perceived as a comprehensive term including health technology assessment domains and AI-specific domains. Incorporation of an early health technology assessment for radiology AI during development will lead to more valuable radiology AI tools. Comprehensive and transparent value assessment of radiology AI tools is essential for their widespread adoption.

The Pivotal Role of Baseline LDCT for Lung Cancer Screening in the Era of Artificial Intelligence.

De Luca GR, Diciotti S, Mascalchi M

pubmed logopapersJun 1 2025
In this narrative review, we address the ongoing challenges of lung cancer (LC) screening using chest low-dose computerized tomography (LDCT) and explore the contributions of artificial intelligence (AI), in overcoming them. We focus on evaluating the initial (baseline) LDCT examination, which provides a wealth of information relevant to the screening participant's health. This includes the detection of large-size prevalent LC and small-size malignant nodules that are typically diagnosed as LCs upon growth in subsequent annual LDCT scans. Additionally, the baseline LDCT examination provides valuable information about smoking-related comorbidities, including cardiovascular disease, chronic obstructive pulmonary disease, and interstitial lung disease (ILD), by identifying relevant markers. Notably, these comorbidities, despite the slow progression of their markers, collectively exceed LC as ultimate causes of death at follow-up in LC screening participants. Computer-assisted diagnosis tools currently improve the reproducibility of radiologic readings and reduce the false negative rate of LDCT. Deep learning (DL) tools that analyze the radiomic features of lung nodules are being developed to distinguish between benign and malignant nodules. Furthermore, AI tools can predict the risk of LC in the years following a baseline LDCT. AI tools that analyze baseline LDCT examinations can also compute the risk of cardiovascular disease or death, paving the way for personalized screening interventions. Additionally, DL tools are available for assessing osteoporosis and ILD, which helps refine the individual's current and future health profile. The primary obstacles to AI integration into the LDCT screening pathway are the generalizability of performance and the explainability.

Bias in Artificial Intelligence: Impact on Breast Imaging.

Net JM, Collado-Mesa F

pubmed logopapersMay 30 2025
Artificial intelligence (AI) in breast imaging has garnered significant attention given the numerous reports of improved efficiency, accuracy, and the potential to bridge the gap of expanded volume in the face of limited physician resources. While AI models are developed with specific data points, on specific equipment, and in specific populations, the real-world clinical environment is dynamic, and patient populations are diverse, which can impact generalizability and widespread adoption of AI in clinical practice. Implementation of AI models into clinical practice requires focused attention on the potential of AI bias impacting outcomes. The following review presents the concept, sources, and types of AI bias to be considered when implementing AI models and offers suggestions on strategies to mitigate AI bias in practice.

Comparative assessment of fairness definitions and bias mitigation strategies in machine learning-based diagnosis of Alzheimer's disease from MR images

Maria Eleftheria Vlontzou, Maria Athanasiou, Christos Davatzikos, Konstantina S. Nikita

arxiv logopreprintMay 29 2025
The present study performs a comprehensive fairness analysis of machine learning (ML) models for the diagnosis of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) from MRI-derived neuroimaging features. Biases associated with age, race, and gender in a multi-cohort dataset, as well as the influence of proxy features encoding these sensitive attributes, are investigated. The reliability of various fairness definitions and metrics in the identification of such biases is also assessed. Based on the most appropriate fairness measures, a comparative analysis of widely used pre-processing, in-processing, and post-processing bias mitigation strategies is performed. Moreover, a novel composite measure is introduced to quantify the trade-off between fairness and performance by considering the F1-score and the equalized odds ratio, making it appropriate for medical diagnostic applications. The obtained results reveal the existence of biases related to age and race, while no significant gender bias is observed. The deployed mitigation strategies yield varying improvements in terms of fairness across the different sensitive attributes and studied subproblems. For race and gender, Reject Option Classification improves equalized odds by 46% and 57%, respectively, and achieves harmonic mean scores of 0.75 and 0.80 in the MCI versus AD subproblem, whereas for age, in the same subproblem, adversarial debiasing yields the highest equalized odds improvement of 40% with a harmonic mean score of 0.69. Insights are provided into how variations in AD neuropathology and risk factors, associated with demographic characteristics, influence model fairness.

Image analysis research in neuroradiology: bridging clinical and technical domains.

Pareto D, Naval-Baudin P, Pons-Escoda A, Bargalló N, Garcia-Gil M, Majós C, Rovira À

pubmed logopapersMay 28 2025
Advancements in magnetic resonance imaging (MRI) analysis over the past decades have significantly reshaped the field of neuroradiology. The ability to extract multiple quantitative measures from each MRI scan, alongside the development of extensive data repositories, has been fundamental to the emergence of advanced methodologies such as radiomics and artificial intelligence (AI). This educational review aims to delineate the importance of image analysis, highlight key paradigm shifts, examine their implications, and identify existing constraints that must be addressed to facilitate integration into clinical practice. Particular attention is given to aiding junior neuroradiologists in navigating this complex and evolving landscape. A comprehensive review of the available analysis toolboxes was conducted, focusing on major technological advancements in MRI analysis, the evolution of data repositories, and the rise of AI and radiomics in neuroradiology. Stakeholders within the field were identified and their roles examined. Additionally, current challenges and barriers to clinical implementation were analyzed. The analysis revealed several pivotal shifts, including the transition from qualitative to quantitative imaging, the central role of large datasets in developing AI tools, and the growing importance of interdisciplinary collaboration. Key stakeholders-including academic institutions, industry partners, regulatory bodies, and clinical practitioners-were identified, each playing a distinct role in advancing the field. However, significant barriers remain, particularly regarding standardization, data sharing, regulatory approval, and integration into clinical workflows. While advancements in MRI analysis offer tremendous potential to enhance neuroradiology practice, realizing this potential requires overcoming technical, regulatory, and practical barriers. Education and structured support for junior neuroradiologists are essential to ensure they are well-equipped to participate in and drive future developments. A coordinated effort among stakeholders is crucial to facilitate the seamless translation of these technological innovations into everyday clinical practice.

Fetal origins of adult disease: transforming prenatal care by integrating Barker's Hypothesis with AI-driven 4D ultrasound.

Andonotopo W, Bachnas MA, Akbar MIA, Aziz MA, Dewantiningrum J, Pramono MBA, Sulistyowati S, Stanojevic M, Kurjak A

pubmed logopapersMay 26 2025
The fetal origins of adult disease, widely known as Barker's Hypothesis, suggest that adverse fetal environments significantly impact the risk of developing chronic diseases, such as diabetes and cardiovascular conditions, in adulthood. Recent advancements in 4D ultrasound (4D US) and artificial intelligence (AI) technologies offer a promising avenue for improving prenatal diagnostics and validating this hypothesis. These innovations provide detailed insights into fetal behavior and neurodevelopment, linking early developmental markers to long-term health outcomes. This study synthesizes contemporary developments in AI-enhanced 4D US, focusing on their roles in detecting fetal anomalies, assessing neurodevelopmental markers, and evaluating congenital heart defects. The integration of AI with 4D US allows for real-time, high-resolution visualization of fetal anatomy and behavior, surpassing the diagnostic precision of traditional methods. Despite these advancements, challenges such as algorithmic bias, data diversity, and real-world validation persist and require further exploration. Findings demonstrate that AI-driven 4D US improves diagnostic sensitivity and accuracy, enabling earlier detection of fetal abnormalities and optimization of clinical workflows. By providing a more comprehensive understanding of fetal programming, these technologies substantiate the links between early-life conditions and adult health outcomes, as proposed by Barker's Hypothesis. The integration of AI and 4D US has the potential to revolutionize prenatal care, paving the way for personalized maternal-fetal healthcare. Future research should focus on addressing current limitations, including ethical concerns and accessibility challenges, to promote equitable implementation. Such advancements could significantly reduce the global burden of chronic diseases and foster healthier generations.
Page 5 of 878 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.