Sort by:
Page 49 of 56552 results

Fetal origins of adult disease: transforming prenatal care by integrating Barker's Hypothesis with AI-driven 4D ultrasound.

Andonotopo W, Bachnas MA, Akbar MIA, Aziz MA, Dewantiningrum J, Pramono MBA, Sulistyowati S, Stanojevic M, Kurjak A

pubmed logopapersMay 26 2025
The fetal origins of adult disease, widely known as Barker's Hypothesis, suggest that adverse fetal environments significantly impact the risk of developing chronic diseases, such as diabetes and cardiovascular conditions, in adulthood. Recent advancements in 4D ultrasound (4D US) and artificial intelligence (AI) technologies offer a promising avenue for improving prenatal diagnostics and validating this hypothesis. These innovations provide detailed insights into fetal behavior and neurodevelopment, linking early developmental markers to long-term health outcomes. This study synthesizes contemporary developments in AI-enhanced 4D US, focusing on their roles in detecting fetal anomalies, assessing neurodevelopmental markers, and evaluating congenital heart defects. The integration of AI with 4D US allows for real-time, high-resolution visualization of fetal anatomy and behavior, surpassing the diagnostic precision of traditional methods. Despite these advancements, challenges such as algorithmic bias, data diversity, and real-world validation persist and require further exploration. Findings demonstrate that AI-driven 4D US improves diagnostic sensitivity and accuracy, enabling earlier detection of fetal abnormalities and optimization of clinical workflows. By providing a more comprehensive understanding of fetal programming, these technologies substantiate the links between early-life conditions and adult health outcomes, as proposed by Barker's Hypothesis. The integration of AI and 4D US has the potential to revolutionize prenatal care, paving the way for personalized maternal-fetal healthcare. Future research should focus on addressing current limitations, including ethical concerns and accessibility challenges, to promote equitable implementation. Such advancements could significantly reduce the global burden of chronic diseases and foster healthier generations.

MobNas ensembled model for breast cancer prediction.

Shahzad T, Saqib SM, Mazhar T, Iqbal M, Almogren A, Ghadi YY, Saeed MM, Hamam H

pubmed logopapersMay 25 2025
Breast cancer poses a real and immense threat to humankind, thus a need to develop a way of diagnosing this devastating disease early, accurately, and in a simpler manner. Thus, while substantial progress has been made in developing machine learning algorithms, deep learning, and transfer learning models, issues with diagnostic accuracy and minimizing diagnostic errors persist. This paper introduces MobNAS, a model that uses MobileNetV2 and NASNetLarge to sort breast cancer images into benign, malignant, or normal classes. The study employs a multi-class classification design and uses a publicly available dataset comprising 1,578 ultrasound images, including 891 benign, 421 malignant, and 266 normal cases. By deploying MobileNetV2, it is easy to work well on devices with less computational capability than is used by NASNetLarge, which enhances its applicability and effectiveness in other tasks. The performance of the proposed MobNAS model was tested on the breast cancer image dataset, and the accuracy level achieved was 97%, the Mean Absolute Error (MAE) was 0.05, and the Matthews Correlation Coefficient (MCC) was 95%. From the findings of this research, it is evident that MobNAS can enhance diagnostic accuracy and reduce existing shortcomings in breast cancer detection.

SW-ViT: A Spatio-Temporal Vision Transformer Network with Post Denoiser for Sequential Multi-Push Ultrasound Shear Wave Elastography

Ahsan Habib Akash, MD Jahin Alam, Md. Kamrul Hasan

arxiv logopreprintMay 24 2025
Objective: Ultrasound Shear Wave Elastography (SWE) demonstrates great potential in assessing soft-tissue pathology by mapping tissue stiffness, which is linked to malignancy. Traditional SWE methods have shown promise in estimating tissue elasticity, yet their susceptibility to noise interference, reliance on limited training data, and inability to generate segmentation masks concurrently present notable challenges to accuracy and reliability. Approach: In this paper, we propose SW-ViT, a novel two-stage deep learning framework for SWE that integrates a CNN-Spatio-Temporal Vision Transformer-based reconstruction network with an efficient Transformer-based post-denoising network. The first stage uses a 3D ResNet encoder with multi-resolution spatio-temporal Transformer blocks that capture spatial and temporal features, followed by a squeeze-and-excitation attention decoder that reconstructs 2D stiffness maps. To address data limitations, a patch-based training strategy is adopted for localized learning and reconstruction. In the second stage, a denoising network with a shared encoder and dual decoders processes inclusion and background regions to produce a refined stiffness map and segmentation mask. A hybrid loss combining regional, smoothness, fusion, and Intersection over Union (IoU) components ensures improvements in both reconstruction and segmentation. Results: On simulated data, our method achieves PSNR of 32.68 dB, CNR of 46.78 dB, and SSIM of 0.995. On phantom data, results include PSNR of 21.11 dB, CNR of 42.14 dB, and SSIM of 0.936. Segmentation IoU values reach 0.949 (simulation) and 0.738 (phantom) with ASSD values being 0.184 and 1.011, respectively. Significance: SW-ViT delivers robust, high-quality elasticity map estimates from noisy SWE data and holds clear promise for clinical application.

Construction of a Prediction Model for Adverse Perinatal Outcomes in Foetal Growth Restriction Based on a Machine Learning Algorithm: A Retrospective Study.

Meng X, Wang L, Wu M, Zhang N, Li X, Wu Q

pubmed logopapersMay 23 2025
To create and validate a machine learning (ML)-based model for predicting the adverse perinatal outcome (APO) in foetal growth restriction (FGR) at diagnosis. A retrospective study. Multi-centre in China. Pregnancies affected by FGR. We enrolled singleton foetuses with a perinatal diagnosis of FGR who were admitted between January 2021 and November 2023. A total of 361 pregnancies from Beijing Obstetrics and Gynecology Hospital were used as the training set and the internal test set. In comparison, data from 50 pregnancies from Haidian Maternal and Child Health Hospital were used as the external test set. Feature screening was performed using the random forest (RF), the Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression (LR). Subsequently, six ML methods, including Stacking, were used to construct models to predict the APO of FGR. Model's performance was evaluated through indicators such as the area under the receiver operating characteristic curve (AUROC). The Shapley Additive Explanation analysis was used to rank each model feature and explain the final model. Mean ± SD gestational age at diagnosis was 32.3 ± 4.8 weeks in the absent APO group and 27.3 ± 3.7 in the present APO group. Women enrolled in the present APO group had a higher rate of hypertension related to pregnancy (74.8% vs. 18.8%, p < 0.001). Among 17 candidate predictors (including maternal characteristics, maternal comorbidities, obstetric characteristics and ultrasound parameters), the integration of RF, LASSO and LR methodologies identified maternal body mass index, hypertension, gestational age at diagnosis of FGR, estimated foetal weight (EFW) z score, EFW growth velocity and abnormal umbilical artery Doppler (defined as a pulsatility index above the 95th percentile or instances of absent/reversed diastolic flow) as significant predictors. The Stacking model demonstrated a good performance in both the internal test set [AUROC: 0.861, 95% confidence interval (CI), 0.838-0.896] and the external test set [AUROC: 0.906, 95% CI, 0.875-0.947]. The calibration curve showed high agreement between the predicted and observed risks. The Hosmer-Lemeshow test for the internal and external test sets was p = 0.387 and p = 0.825, respectively. The ML algorithm for APO, which integrates maternal clinical factors and ultrasound parameters, demonstrates good predictive value for APO in FGR at diagnosis. This suggested that ML techniques may be a valid approach for the early detection of high-risk APO in FGR pregnancies.

High-Fidelity Functional Ultrasound Reconstruction via A Visual Auto-Regressive Framework

Xuhang Chen, Zhuo Li, Yanyan Shen, Mufti Mahmud, Hieu Pham, Chi-Man Pun, Shuqiang Wang

arxiv logopreprintMay 23 2025
Functional ultrasound (fUS) imaging provides exceptional spatiotemporal resolution for neurovascular mapping, yet its practical application is significantly hampered by critical challenges. Foremost among these are data scarcity, arising from ethical considerations and signal degradation through the cranium, which collectively limit dataset diversity and compromise the fairness of downstream machine learning models.

Novel Deep Learning Framework for Simultaneous Assessment of Left Ventricular Mass and Longitudinal Strain: Clinical Feasibility and Validation in Patients with Hypertrophic Cardiomyopathy

Park, J., Yoon, Y. E., Jang, Y., Jung, T., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Chun, E. J., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 23 2025
BackgroundThis study aims to present the Segmentation-based Myocardial Advanced Refinement Tracking (SMART) system, a novel artificial intelligence (AI)-based framework for transthoracic echocardiography (TTE) that incorporates motion tracking and left ventricular (LV) myocardial segmentation for automated LV mass (LVM) and global longitudinal strain (LVGLS) assessment. MethodsThe SMART system demonstrates LV speckle tracking based on motion vector estimation, refined by structural information using endocardial and epicardial segmentation throughout the cardiac cycle. This approach enables automated measurement of LVMSMART and LVGLSSMART. The feasibility of SMART is validated in 111 hypertrophic cardiomyopathy (HCM) patients (median age: 58 years, 69% male) who underwent TTE and cardiac magnetic resonance imaging (CMR). ResultsLVGLSSMART showed a strong correlation with conventional manual LVGLS measurements (Pearsons correlation coefficient [PCC] 0.851; mean difference 0 [-2-0]). When compared to CMR as the reference standard for LVM, the conventional dimension-based TTE method overestimated LVM (PCC 0.652; mean difference: 106 [90-123]), whereas LVMSMART demonstrated excellent agreement with CMR (PCC 0.843; mean difference: 1 [-11-13]). For predicting extensive myocardial fibrosis, LVGLSSMART and LVMSMART exhibited performance comparable to conventional LVGLS and CMR (AUC: 0.72 and 0.66, respectively). Patients identified as high-risk for extensive fibrosis by LVGLSSMART and LVMSMART had significantly higher rates of adverse outcomes, including heart failure hospitalization, new-onset atrial fibrillation, and defibrillator implantation. ConclusionsThe SMART technique provides a comparable LVGLS evaluation and a more accurate LVM assessment than conventional TTE, with predictive values for myocardial fibrosis and adverse outcomes. These findings support its utility in HCM management.

Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection

Dan Yuan, Yi Feng, Ziyun Tang

arxiv logopreprintMay 23 2025
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.

Ovarian Cancer Screening: Recommendations and Future Prospects.

Chiu S, Staley H, Jeevananthan P, Mascarenhas S, Fotopoulou C, Rockall A

pubmed logopapersMay 23 2025
Ovarian cancer remains a significant cause of mortality among women, largely due to challenges in early detection. Current screening strategies, including transvaginal ultrasound and CA125 testing, have limited sensitivity and specificity, particularly in asymptomatic women or those with early-stage disease. The European Society of Gynaecological Oncology, the European Society for Medical Oncology, the European Society of Pathology, and other health organizations currently do not recommend routine population-based screening for ovarian cancer due to the high rates of false-positives and the absence of a reliable early detection method.This review examines existing ovarian cancer screening guidelines and explores recent advances in diagnostic technologies including radiomics, artificial intelligence, point-of-care testing, and novel detection methods.Emerging technologies show promise with respect to improving ovarian cancer detection by enhancing sensitivity and specificity compared to traditional methods. Artificial intelligence and radiomics have potential for revolutionizing ovarian cancer screening by identifying subtle diagnostic patterns, while liquid biopsy-based approaches and cell-free DNA profiling enable tumor-specific biomarker detection. Minimally invasive methods, such as intrauterine lavage and salivary diagnostics, provide avenues for population-wide applicability. However, large-scale validation is required to establish these techniques as effective and reliable screening options. · Current ovarian cancer screening methods lack sensitivity and specificity for early-stage detection.. · Emerging technologies like artificial intelligence, radiomics, and liquid biopsy offer improved diagnostic accuracy.. · Large-scale clinical validation is required, particularly for baseline-risk populations.. · Chiu S, Staley H, Jeevananthan P et al. Ovarian Cancer Screening: Recommendations and Future Prospects. Rofo 2025; DOI 10.1055/a-2589-5696.

Multimodal ultrasound-based radiomics and deep learning for differential diagnosis of O-RADS 4-5 adnexal masses.

Zeng S, Jia H, Zhang H, Feng X, Dong M, Lin L, Wang X, Yang H

pubmed logopapersMay 23 2025
Accurate differentiation between benign and malignant adnexal masses is crucial for patients to avoid unnecessary surgical interventions. Ultrasound (US) is the most widely utilized diagnostic and screening tool for gynecological diseases, with contrast-enhanced US (CEUS) offering enhanced diagnostic precision by clearly delineating blood flow within lesions. According to the Ovarian and Adnexal Reporting and Data System (O-RADS), masses classified as categories 4 and 5 carry the highest risk of malignancy. However, the diagnostic accuracy of US remains heavily reliant on the expertise and subjective interpretation of radiologists. Radiomics has demonstrated significant value in tumor differential diagnosis by extracting microscopic information imperceptible to the human eye. Despite this, no studies to date have explored the application of CEUS-based radiomics for differentiating adnexal masses. This study aims to develop and validate a multimodal US-based nomogram that integrates clinical variables, radiomics, and deep learning (DL) features to effectively distinguish adnexal masses classified as O-RADS 4-5. From November 2020 to March 2024, we enrolled 340 patients who underwent two-dimensional US (2DUS) and CEUS and had masses categorized as O-RADS 4-5. These patients were randomly divided into a training cohort and a test cohort in a 7:3 ratio. Adnexal masses were manually segmented from 2DUS and CEUS images. Using machine learning (ML) and DL techniques, five models were developed and validated to differentiate adnexal masses. The diagnostic performance of these models was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, precision, and F1-score. Additionally, a nomogram was constructed to visualize outcome measures. The CEUS-based radiomics model outperformed the 2DUS model (AUC: 0.826 vs. 0.737). Similarly, the CEUS-based DL model surpassed the 2DUS model (AUC: 0.823 vs. 0.793). The ensemble model combining clinical variables, radiomics, and DL features achieved the highest AUC (0.929). Our study confirms the effectiveness of CEUS-based radiomics for distinguishing adnexal masses with high accuracy and specificity using a multimodal US-based radiomics DL nomogram. This approach holds significant promise for improving the diagnostic precision of adnexal masses classified as O-RADS 4-5.

An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study.

Zhong L, Shi L, Li W, Zhou L, Wang K, Gu L

pubmed logopapersMay 21 2025
Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III). Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed. The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively. The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).
Page 49 of 56552 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.