Sort by:
Page 487 of 7527514 results

Xu, Y., Teutsch, B., Zeng, W., Hu, Y., Rastogi, S., Hu, E. Y., DeGregorio, I. M., Fung, C. W., Richter, B. I., Cummings, R., Goldberg, J. E., Mathieu, E., Appiah Asare, B., Hegedus, P., Gurza, K.-B., Szabo, I. V., Tarjan, H., Szentesi, A., Borbely, R., Molnar, D., Faluhelyi, N., Vincze, A., Marta, K., Hegyi, P., Lei, Q., Gonda, T., Huang, C., Shen, Y.

medrxiv logopreprintJul 7 2025
Background and aimsAcute pancreatitis (AP) is a common gastrointestinal disease with rising global incidence. While most cases are mild, severe AP (SAP) carries high mortality. Early and accurate severity prediction is crucial for optimal management. However, existing severity prediction models, such as BISAP and mCTSI, have modest accuracy and often rely on data unavailable at admission. This study proposes a deep learning (DL) model to predict AP severity using abdominal contrast-enhanced CT (CECT) scans acquired within 24 hours of admission. MethodsWe collected 10,130 studies from 8,335 patients across a multi-site U.S. health system. The model was trained in two stages: (1) self-supervised pretraining on large-scale unlabeled CT studies and (2) fine-tuning on 550 labeled studies. Performance was evaluated against mCTSI and BISAP on a hold-out internal test set (n=100 patients) and externally validated on a Hungarian AP registry (n=518 patients). ResultsOn the internal test set, the model achieved AUROCs of 0.888 (95% CI: 0.800-0.960) for SAP and 0.888 (95% CI: 0.819-0.946) for mild AP (MAP), outperforming mCTSI (p = 0.002). External validation showed robust AUROCs of 0.887 (95% CI: 0.825-0.941) for SAP and 0.858 (95% CI: 0.826-0.888) for MAP, surpassing mCTSI (p = 0.024) and BISAP (p = 0.002). Retrospective simulation suggested the models potential to support admission triage and serve as a second reader during CECT interpretation. ConclusionsThe proposed DL model outperformed standard scoring systems for AP severity prediction, generalized well to external data, and shows promise for providing early clinical decision support and improving resource allocation.

Aljuaid H, Albalahad H, Alshuaibi W, Almutairi S, Aljohani TH, Hussain N, Mohammad F

pubmed logopapersJul 7 2025
<b>Background:</b> Chest X-rays are rapidly gaining prominence as a prevalent diagnostic tool, as recognized by the World Health Organization (WHO). However, interpreting chest X-rays can be demanding and time-consuming, even for experienced radiologists, leading to potential misinterpretations and delays in treatment. <b>Method:</b> The purpose of this research is the development of a RadAI model. The RadAI model can accurately detect four types of lung abnormalities in chest X-rays and generate a report on each identified abnormality. Moreover, deep learning algorithms, particularly convolutional neural networks (CNNs), have demonstrated remarkable potential in automating medical image analysis, including chest X-rays. This work addresses the challenge of chest X-ray interpretation by fine tuning the following three advanced deep learning models: Feature-selective and Spatial Receptive Fields Network (FSRFNet50), ResNext50, and ResNet50. These models are compared based on accuracy, precision, recall, and F1-score. <b>Results:</b> The outstanding performance of RadAI shows its potential to assist radiologists to interpret the detected chest abnormalities accurately. <b>Conclusions:</b> RadAI is beneficial in enhancing the accuracy and efficiency of chest X-ray interpretation, ultimately supporting the timely and reliable diagnosis of lung abnormalities.

Chang J, Lee KJ, Wang TH, Chen CM

pubmed logopapersJul 7 2025
<b>Background</b>: Acute Aortic Syndrome (AAS), encompassing aortic dissection (AD), intramural hematoma (IMH), and penetrating atherosclerotic ulcer (PAU), presents diagnostic challenges due to its varied manifestations and the critical need for rapid assessment. <b>Methods</b>: We developed a multi-stage deep learning model trained on chest computed tomography angiography (CTA) scans. The model utilizes a U-Net architecture for aortic segmentation, followed by a cascaded classification approach for detecting AD and IMH, and a multiscale CNN for identifying PAU. External validation was conducted on 260 anonymized CTA scans from 14 U.S. clinical sites, encompassing data from four different CT manufacturers. Performance metrics, including sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), were calculated with 95% confidence intervals (CIs) using Wilson's method. Model performance was compared against predefined benchmarks. <b>Results</b>: The model achieved a sensitivity of 0.94 (95% CI: 0.88-0.97), specificity of 0.93 (95% CI: 0.89-0.97), and an AUC of 0.96 (95% CI: 0.94-0.98) for overall AAS detection, with <i>p</i>-values < 0.001 when compared to the 0.80 benchmark. Subgroup analyses demonstrated consistent performance across different patient demographics, CT manufacturers, slice thicknesses, and anatomical locations. <b>Conclusions</b>: This deep learning model effectively detects the full spectrum of AAS across diverse populations and imaging platforms, suggesting its potential utility in clinical settings to enable faster triage and expedite patient management.

Bacchetti E, De Nardin A, Giannarini G, Cereser L, Zuiani C, Crestani A, Girometti R, Foresti GL

pubmed logopapersJul 7 2025
<b>Background:</b> Accurate upfront risk stratification in suspected clinically significant prostate cancer (csPCa) may reduce unnecessary prostate biopsies. Integrating clinical and Magnetic Resonance Imaging (MRI) variables using deep learning could improve prediction. <b>Methods:</b> We retrospectively analysed 538 men who underwent MRI and biopsy between April 2019-September 2024. A fully connected neural network was trained using 5-fold cross-validation. Model 1 included clinical features (age, prostate-specific antigen [PSA], PSA density, digital rectal examination, family history, prior negative biopsy, and ongoing therapy). Model 2 used MRI-derived Prostate Imaging Reporting and Data System (PI-RADS) categories. Model 3 used all previous variables as well as lesion size, location, and prostate volume as determined on MRI. <b>Results:</b> Model 3 achieved the highest area under the receiver operating characteristic curve (AUC = 0.822), followed by Model 2 (AUC = 0.778) and Model 1 (AUC = 0.716). Sensitivities for detecting clinically significant prostate cancer (csPCa) were 87.4%, 91.6%, and 86.8% for Models 1, 2, and 3, respectively. Although Model 3 had slightly lower sensitivity than Model 2, it showed higher specificity, reducing false positives and avoiding 43.4% and 21.2% more biopsies compared to Models 1 and 2. Decision curve analysis showed M2 had the highest net benefit at risk thresholds ≤ 20%, while M3 was superior above 20%. <b>Conclusions:</b> Model 3 improved csPCa risk stratification, particularly in biopsy-averse settings, while Model 2 was more effective in cancer-averse scenarios. These models support personalized, context-sensitive biopsy decisions.

Bastien Milani, Jean-Baptist Ledoux, Berk Can Acikgoz, Xavier Richard

arxiv logopreprintJul 7 2025
The aim of the present article is to enrich the comprehension of iterative magnetic resonance imaging (MRI) reconstructions, including compressed sensing (CS) and iterative deep learning (DL) reconstructions, by describing them in the general framework of finite-dimensional inner-product spaces. In particular, we show that image-space preconditioning (ISP) and data-space preconditioning (DSP) can be formulated as non-conventional inner-products. The main gain of our reformulation is an embedding of ISP in the variational formulation of the MRI reconstruction problem (in an algorithm-independent way) which allows in principle to naturally and systematically propagate ISP in all iterative reconstructions, including many iterative DL and CS reconstructions where preconditioning is lacking. The way in which we apply linear algebraic tools to MRI reconstructions as presented in this article is a novelty. A secondary aim of our article is to offer a certain didactic material to scientists who are new in the field of MRI reconstruction. Since we explore here some mathematical concepts of reconstruction, we take that opportunity to recall some principles that may be understood for experts, but which may be hard to find in the literature for beginners. In fact, the description of many mathematical tools of MRI reconstruction is fragmented in the literature or sometimes missing because considered as a general knowledge. Further, some of those concepts can be found in mathematic manuals, but not in a form that is oriented toward MRI. For example, we think of the conjugate gradient descent, the notion of derivative with respect to non-conventional inner products, or simply the notion of adjoint. The authors believe therefore that it is beneficial for their field of research to dedicate some space to such a didactic material.

Darilmaz MF, Demirel M, Altun HO, Adiyaman MC, Bilgili F, Durmaz H, Sağlam Y

pubmed logopapersJul 6 2025
Developmental dysplasia of the hip (DDH) includes a range of conditions caused by inadequate hip joint development. Early diagnosis is essential to prevent long-term complications. Ultrasound, particularly the Graf method, is commonly used for DDH screening, but its interpretation is highly operator-dependent and lacks standardization, especially in identifying the correct standard plane. This variability often leads to misdiagnosis, particularly among less experienced users. This study presents AI-SPS, an AI-based instant standard plane detection software for real-time hip ultrasound analysis. Using 2,737 annotated frames, including 1,737 standard and 1,000 non-standard examples extracted from 45 clinical ultrasound videos, we trained and evaluated two object detection models: SSD-MobileNet V2 and YOLOv11n. The software was further validated on an independent set of 934 additional frames (347 standard and 587 non-standard) from the same video sources. YOLOv11n achieved an accuracy of 86.3%, precision of 0.78, recall of 0.88, and F1-score of 0.83, outperforming SSD-MobileNet V2, which reached an accuracy of 75.2%. These results indicate that AI-SPS can detect the standard plane with expert-level performance and improve consistency in DDH screening. By reducing operator variability, the software supports more reliable ultrasound assessments. Integration with live systems and Graf typing may enable a fully automated DDH diagnostic workflow. Level of Evidence: Level III, diagnostic study.

Guan X, Liu J, Xu L, Jiang W, Wang C

pubmed logopapersJul 6 2025
Early recurrence (ER) following curative-intent surgery remains a major obstacle to improving long-term outcomes in patients with pancreatic cancer (PC). The accurate preoperative prediction of ER could significantly aid clinical decision-making and guide postoperative management. A retrospective cohort of 493 patients with histologically confirmed PC who underwent resection was analyzed. Contrast-enhanced computed tomography (CT) images were used for tumor segmentation, followed by radiomics and deep learning feature extraction. In total, four distinct feature selection algorithms were employed. Predictive models were constructed using random forest (RF) and support vector machine (SVM) classifiers. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC). A comprehensive nomogram integrating feature scores and clinical factors was developed and validated. Among all of the constructed models, the Inte-SVM demonstrated superior classification performance. The nomogram, incorporating the Inte-feature score, CT-assessed lymph node status, and carbohydrate antigen 19-9 (CA19-9), yielded excellent predictive accuracy in the validation cohort (AUC = 0.920). Calibration curves showed strong agreement between predicted and observed outcomes, and decision curve analysis confirmed the clinical utility of the nomogram. A CT-based deep learning radiomics nomogram enabled the accurate preoperative prediction of early recurrence in patients with pancreatic cancer. This model may serve as a valuable tool to assist clinicians in tailoring postoperative strategies and promoting personalized therapeutic approaches.

Xin You, Runze Yang, Chuyan Zhang, Zhongliang Jiang, Jie Yang, Nassir Navab

arxiv logopreprintJul 6 2025
The temporal interpolation task for 4D medical imaging, plays a crucial role in clinical practice of respiratory motion modeling. Following the simplified linear-motion hypothesis, existing approaches adopt optical flow-based models to interpolate intermediate frames. However, realistic respiratory motions should be nonlinear and quasi-periodic with specific frequencies. Intuited by this property, we resolve the temporal interpolation task from the frequency perspective, and propose a Fourier basis-guided Diffusion model, termed FB-Diff. Specifically, due to the regular motion discipline of respiration, physiological motion priors are introduced to describe general characteristics of temporal data distributions. Then a Fourier motion operator is elaborately devised to extract Fourier bases by incorporating physiological motion priors and case-specific spectral information in the feature space of Variational Autoencoder. Well-learned Fourier bases can better simulate respiratory motions with motion patterns of specific frequencies. Conditioned on starting and ending frames, the diffusion model further leverages well-learned Fourier bases via the basis interaction operator, which promotes the temporal interpolation task in a generative manner. Extensive results demonstrate that FB-Diff achieves state-of-the-art (SOTA) perceptual performance with better temporal consistency while maintaining promising reconstruction metrics. Codes are available.

You Zhou, Lijiang Chen, Guangxia Cui, Wenpei Bai, Yu Guo, Shuchang Lyu, Guangliang Cheng, Qi Zhao

arxiv logopreprintJul 6 2025
Ovarian tumor, as a common gynecological disease, can rapidly deteriorate into serious health crises when undetected early, thus posing significant threats to the health of women. Deep neural networks have the potential to identify ovarian tumors, thereby reducing mortality rates, but limited public datasets hinder its progress. To address this gap, we introduce a vital ovarian tumor pathological recognition dataset called \textbf{ViTaL} that contains \textbf{V}isual, \textbf{T}abular and \textbf{L}inguistic modality data of 496 patients across six pathological categories. The ViTaL dataset comprises three subsets corresponding to different patient data modalities: visual data from 2216 two-dimensional ultrasound images, tabular data from medical examinations of 496 patients, and linguistic data from ultrasound reports of 496 patients. It is insufficient to merely distinguish between benign and malignant ovarian tumors in clinical practice. To enable multi-pathology classification of ovarian tumor, we propose a ViTaL-Net based on the Triplet Hierarchical Offset Attention Mechanism (THOAM) to minimize the loss incurred during feature fusion of multi-modal data. This mechanism could effectively enhance the relevance and complementarity between information from different modalities. ViTaL-Net serves as a benchmark for the task of multi-pathology, multi-modality classification of ovarian tumors. In our comprehensive experiments, the proposed method exhibited satisfactory performance, achieving accuracies exceeding 90\% on the two most common pathological types of ovarian tumor and an overall performance of 85\%. Our dataset and code are available at https://github.com/GGbond-study/vitalnet.

Yuanhe Tian, Chen Su, Junwen Duan, Yan Song

arxiv logopreprintJul 6 2025
Visual question answering (VQA) in medical imaging aims to support clinical diagnosis by automatically interpreting complex imaging data in response to natural language queries. Existing studies typically rely on distinct visual and textual encoders to independently extract features from medical images and clinical questions, which are subsequently combined to generate answers. Specifically, in computed tomography (CT), such approaches are similar to the conventional practices in medical image analysis. However, these approaches pay less attention to the spatial continuity and inter-slice correlations in the volumetric CT data, leading to fragmented and imprecise responses. In this paper, we propose a novel large language model (LLM)-based framework enhanced by a graph representation of salient features. Different from conventional multimodal encoding strategies, our approach constructs a cross-modal graph integrating both visual and textual features, treating individual CT slices and question tokens as nodes within the graph. We further leverage an attentive graph convolutional network to dynamically fuse information within this structure. The resulting aggregated graph features then serve as a soft prompt to guide a large language model in generating accurate answers. Extensive experiments on the M3D-VQA benchmark demonstrate that our approach consistently outperforms baselines across multiple evaluation metrics, offering more robust reasoning capabilities.
Page 487 of 7527514 results
Show
per page

Ready to Sharpen Your Edge?

Subscribe to join 7,500+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.