Sort by:
Page 47 of 65646 results

Distinct brain age gradients across the adult lifespan reflect diverse neurobiological hierarchies.

Riccardi N, Teghipco A, Newman-Norlund S, Newman-Norlund R, Rangus I, Rorden C, Fridriksson J, Bonilha L

pubmed logopapersMay 25 2025
'Brain age' is a biological clock typically used to describe brain health with one number, but its relationship with established gradients of cortical organization remains unclear. We address this gap by leveraging a data-driven, region-specific brain age approach in 335 neurologically intact adults, using a convolutional neural network (volBrain) to estimate regional brain ages directly from structural MRI without a predefined set of morphometric properties. Six distinct gradients of brain aging are replicated in two independent cohorts. Spatial patterns of accelerated brain aging in older adults quantitatively align with the archetypal sensorimotor-to-association axis of cortical organization. Other brain aging gradients reflect neurobiological hierarchies such as gene expression and externopyramidization. Participant-level correspondences to brain age gradients are associated with cognitive and sensorimotor performance and explained behavioral variance more effectively than global brain age. These results suggest that regional brain age patterns reflect fundamental principles of cortical organization and behavior.

Pulse Pressure, White Matter Hyperintensities, and Cognition: Mediating Effects Across the Adult Lifespan.

Hannan J, Newman-Norlund S, Busby N, Wilson SC, Newman-Norlund R, Rorden C, Fridriksson J, Bonilha L, Riccardi N

pubmed logopapersMay 25 2025
To investigate whether pulse pressure or mean arterial pressure mediates the relationship between age and white matter hyperintensity load and to examine the mediating effect of white matter hyperintensities on cognition. Demographic information, blood pressure, current medication lists, and Montreal Cognitive Assessment scores for 231 stroke- and dementia-free adults were retrospectively obtained from the Aging Brain Cohort study. Total WMH load was determined from T2-FLAIR magnetic resonance scans using the TrUE-Net deep learning tool for white matter segmentation. In separate models, we used mediation analysis to assess whether pulse pressure or MAP mediates the relationship between age and total white matter hyperintensity load, controlling for cardiovascular confounds. We also assessed whether white matter hyperintensity load mediated the relationship between age and cognitive scores. Pulse pressure, but not mean arterial pressure, significantly mediated the relationship between age and white matter hyperintensity load. White matter hyperintensity load partially mediated the relationship between age and Montreal Cognitive Assessment score. Our results indicate that pulse pressure, but not mean arterial pressure, is mechanistically associated with age-related accumulation of white matter hyperintensities, independent of other cardiovascular risk factors. White matter hyperintensity load was a mediator of cognitive scores across the adult lifespan. Effective management of pulse pressure may be especially important for maintenance of brain health and cognition.

CardioCoT: Hierarchical Reasoning for Multimodal Survival Analysis

Shaohao Rui, Haoyang Su, Jinyi Xiang, Lian-Ming Wu, Xiaosong Wang

arxiv logopreprintMay 25 2025
Accurate prediction of major adverse cardiovascular events recurrence risk in acute myocardial infarction patients based on postoperative cardiac MRI and associated clinical notes is crucial for precision treatment and personalized intervention. Existing methods primarily focus on risk stratification capability while overlooking the need for intermediate robust reasoning and model interpretability in clinical practice. Moreover, end-to-end risk prediction using LLM/VLM faces significant challenges due to data limitations and modeling complexity. To bridge this gap, we propose CardioCoT, a novel two-stage hierarchical reasoning-enhanced survival analysis framework designed to enhance both model interpretability and predictive performance. In the first stage, we employ an evidence-augmented self-refinement mechanism to guide LLM/VLMs in generating robust hierarchical reasoning trajectories based on associated radiological findings. In the second stage, we integrate the reasoning trajectories with imaging data for risk model training and prediction. CardioCoT demonstrates superior performance in MACE recurrence risk prediction while providing interpretable reasoning processes, offering valuable insights for clinical decision-making.

Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.

White OA, Shur J, Castagnoli F, Charles-Edwards G, Whitcher B, Collins DJ, Cashmore MTD, Hall MG, Thomas SA, Thompson A, Harrison CA, Hopkinson G, Koh DM, Winfield JM

pubmed logopapersMay 24 2025
AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions. 58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance. Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs. IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.

Preoperative risk assessment of invasive endometrial cancer using MRI-based radiomics: a systematic review and meta-analysis.

Gao Y, Liang F, Tian X, Zhang G, Zhang H

pubmed logopapersMay 24 2025
Image-derived machine learning (ML) is a robust and growing field in diagnostic imaging systems for both clinicians and radiologists. Accurate preoperative radiological evaluation of the invasive ability of endometrial cancer (EC) can increase the degree of clinical benefit. The present study aimed to investigate the diagnostic performance of magnetic resonance imaging (MRI)-derived artificial intelligence for accurate preoperative assessment of the invasive risk. The PubMed, Embase, Cochrane Library and Web of Science databases were searched, and pertinent English-language papers were collected. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and positive and negative likelihood ratios (PLR and NLR, respectively) of all the papers were calculated using Stata software. The results were plotted on a summary receiver operating characteristic (SROC) curve, publication bias and threshold effects were evaluated, and meta-regression and subgroup analyses were conducted to explore the possible causes of intratumoral heterogeneity. MRI-based radiomics revealed pooled sensitivity (SEN) and specificity (SPE) values of 0.85 and 0.82 for the prediction of high-grade EC; 0.80 and 0.85 for deep myometrial invasion (DMI); 0.85 and 0.73 for lymphovascular space invasion (LVSI); 0.79 and 0.85 for microsatellite instability (MSI); and 0.90 and 0.72 for lymph node metastasis (LNM), respectively. For LVSI prediction and high-grade histological analysis, meta-regression revealed that the image segmentation and MRI-based radiomics modeling contributed to heterogeneity (p = 0.003 and 0.04). Through a systematic review and meta-analysis of the reported literature, preoperative MRI-derived ML could help clinicians accurately evaluate EC risk factors, potentially guiding individual treatment thereafter.

Noninvasive prediction of failure of the conservative treatment in lateral epicondylitis by clinicoradiological features and elbow MRI radiomics based on interpretable machine learning: a multicenter cohort study.

Cui J, Wang P, Zhang X, Zhang P, Yin Y, Bai R

pubmed logopapersMay 24 2025
To develop and validate an interpretable machine learning model based on clinicoradiological features and radiomic features based on magnetic resonance imaging (MRI) to predict the failure of conservative treatment in lateral epicondylitis (LE). This retrospective study included 420 patients with LE from three hospitals, divided into a training cohort (n = 245), an internal validation cohort (n = 115), and an external validation cohort (n = 60). Patients were categorized into conservative treatment failure (n = 133) and conservative treatment success (n = 287) groups based on the outcome of conservative treatment. We developed two predictive models: one utilizing clinicoradiological features, and another integrating clinicoradiological and radiomic features. Seven machine learning algorithms were evaluated to determine the optimal model for predicting the failure of conservative treatment. Model performance was assessed using ROC, and model interpretability was examined using SHapley Additive exPlanations (SHAP). The LightGBM algorithm was selected as the optimal model because of its superior performance. The combined model demonstrated enhanced predictive accuracy with an area under the ROC curve (AUC) of 0.96 (95% CI: 0.91, 0.99) in the external validation cohort. SHAP analysis identified the radiological feature "CET coronal tear size" and the radiomic feature "AX_log-sigma-1-0-mm-3D_glszm_SmallAreaEmphasis" as key predictors of conservative treatment failure. We developed and validated an interpretable LightGBM machine learning model that integrates clinicoradiological and radiomic features to predict the failure of conservative treatment in LE. The model demonstrates high predictive accuracy and offers valuable insights into key prognostic factors.

Cross-Fusion Adaptive Feature Enhancement Transformer: Efficient high-frequency integration and sparse attention enhancement for brain MRI super-resolution.

Yang Z, Xiao H, Wang X, Zhou F, Deng T, Liu S

pubmed logopapersMay 24 2025
High-resolution magnetic resonance imaging (MRI) is essential for diagnosing and treating brain diseases. Transformer-based approaches demonstrate strong potential in MRI super-resolution by capturing long-range dependencies effectively. However, existing Transformer-based super-resolution methods face several challenges: (1) they primarily focus on low-frequency information, neglecting the utilization of high-frequency information; (2) they lack effective mechanisms to integrate both low-frequency and high-frequency information; (3) they struggle to effectively eliminate redundant information during the reconstruction process. To address these issues, we propose the Cross-fusion Adaptive Feature Enhancement Transformer (CAFET). Our model maximizes the potential of both CNNs and Transformers. It consists of four key blocks: a high-frequency enhancement block for extracting high-frequency information; a hybrid attention block for capturing global information and local fitting, which includes channel attention and shifted rectangular window attention; a large-window fusion attention block for integrating local high-frequency features and global low-frequency features; and an adaptive sparse overlapping attention block for dynamically retaining key information and enhancing the aggregation of cross-window features. Extensive experiments validate the effectiveness of the proposed method. On the BraTS and IXI datasets, with an upsampling factor of ×2, the proposed method achieves a maximum PSNR improvement of 2.4 dB and 1.3 dB compared to state-of-the-art methods, along with an SSIM improvement of up to 0.16% and 1.42%. Similarly, at an upsampling factor of ×4, the proposed method achieves a maximum PSNR improvement of 1.04 dB and 0.3 dB over the current leading methods, along with an SSIM improvement of up to 0.25% and 1.66%. Our method is capable of reconstructing high-quality super-resolution brain MRI images, demonstrating significant clinical potential.

Using machine learning models based on cardiac magnetic resonance parameters to predict the prognostic in children with myocarditis.

Hu D, Cui M, Zhang X, Wu Y, Liu Y, Zhai D, Guo W, Ju S, Fan G, Cai W

pubmed logopapersMay 24 2025
To develop machine learning (ML) models incorporating explanatory cardiac magnetic resonance (CMR) parameters for predicting the prognosis of myocarditis in pediatric patients. 77 patients with pediatric myocarditis diagnosed clinically between January 2020 and December 2023 were enrolled retrospectively. All patients were examined by ultrasound, electrocardiogram (ECG), serum biomarkers on admission, and CMR scan to obtain 16 explanatory CMR parameters. All patients underwent follow-up echocardiography and CMR. Patients were divided into two groups according to the occurrence of adverse cardiac events (ACE) during follow-up: the poor prognosis group (n = 23) and the good prognosis group (n = 54). Four models were established, including logistic regression (LR), random forest (RF), support vector machine classifier (SVC), and extreme gradient boosting (XGBoost) model. The performance of each model was evaluated by the area under the receiver operating characteristic curve (AUC). Model interpretation was generated by Shapley additive interpretation (Shap). Among the four models, the three most important features were late gadolinium enhancement (LGE), left ventricular ejection fraction (LVEF), and SAXPeak Global Circumferential Strain (SAXGCS). In addition, LGE, LVEF, SAXGCS, and LAXPeak Global Longitudinal Strain (LAXGLS) were selected as the key predictors for all four models. Four interpretable CMR parameters were extracted, among which the LR model had the best prediction performance. The AUC, sensitivity, and specificity were 0.893, 0.820, and 0.944, respectively. The findings indicate that the presence of LGE on CMR imaging, along with reductions in LVEF, SAXGCS, and LAXGLS, are predictive of poor prognosis in patients with acute myocarditis. ML models, particularly the LR model, demonstrate the potential to predict the prognosis of children with myocarditis. These findings provide valuable insights for cardiologists, supporting more informed clinical decision-making and potentially enhancing patient outcomes in pediatric myocarditis cases.

MATI: A GPU-accelerated toolbox for microstructural diffusion MRI simulation and data fitting with a graphical user interface.

Xu J, Devan SP, Shi D, Pamulaparthi A, Yan N, Zu Z, Smith DS, Harkins KD, Gore JC, Jiang X

pubmed logopapersMay 24 2025
To introduce MATI (Microstructural Analysis Toolbox for Imaging), a versatile MATLAB-based toolbox that combines both simulation and data fitting capabilities for microstructural dMRI research. MATI provides a user-friendly, graphical user interface that enables researchers, including those without much programming experience, to perform advanced simulations and data analyses for microstructural MRI research. For simulation, MATI supports arbitrary microstructural tissues and pulse sequences. For data fitting, MATI supports a range of fitting methods, including traditional non-linear least squares, Bayesian approaches, machine learning, and dictionary matching methods, allowing users to tailor analyses based on specific research needs. Optimized with vectorized matrix operations and high-performance numerical libraries, MATI achieves high computational efficiency, enabling rapid simulations and data fitting on CPU and GPU hardware. While designed for microstructural dMRI, MATI's generalized framework can be extended to other imaging methods, making it a flexible and scalable tool for quantitative MRI research. MATI offers a significant step toward translating advanced microstructural MRI techniques into clinical applications.

Symbolic and hybrid AI for brain tissue segmentation using spatial model checking.

Belmonte G, Ciancia V, Massink M

pubmed logopapersMay 24 2025
Segmentation of 3D medical images, and brain segmentation in particular, is an important topic in neuroimaging and in radiotherapy. Overcoming the current, time consuming, practise of manual delineation of brain tumours and providing an accurate, explainable, and replicable method of segmentation of the tumour area and related tissues is therefore an open research challenge. In this paper, we first propose a novel symbolic approach to brain segmentation and delineation of brain lesions based on spatial model checking. This method has its foundations in the theory of closure spaces, a generalisation of topological spaces, and spatial logics. At its core is a high-level declarative logic language for image analysis, ImgQL, and an efficient spatial model checker, VoxLogicA, exploiting state-of-the-art image analysis libraries in its model checking algorithm. We then illustrate how this technique can be combined with Machine Learning techniques leading to a hybrid AI approach that provides accurate and explainable segmentation results. We show the results of the application of the symbolic approach on several public datasets with 3D magnetic resonance (MR) images. Three datasets are provided by the 2017, 2019 and 2020 international MICCAI BraTS Challenges with 210, 259 and 293 MR images, respectively, and the fourth is the BrainWeb dataset with 20 (synthetic) 3D patient images of the normal brain. We then apply the hybrid AI method to the BraTS 2020 training set. Our segmentation results are shown to be in line with the state-of-the-art with respect to other recent approaches, both from the accuracy point of view as well as from the view of computational efficiency, but with the advantage of them being explainable.
Page 47 of 65646 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.